LncRNA H19 Promotes Gastric Cancer Metastasis via miR-148-3p/SOX-12 Axis.

IF 2.6 4区 医学 Q3 CELL BIOLOGY
Analytical Cellular Pathology Pub Date : 2024-08-17 eCollection Date: 2024-01-01 DOI:10.1155/2024/6217134
Xin Zhang, Ge Wang, Xiaoru Li, Yanqing Liu, Xue Wu, Yazhe Zhou, Jie Liu, Haiying Wang, Rui Jiao, Ying Chen, Qiang Wang
{"title":"LncRNA H19 Promotes Gastric Cancer Metastasis via miR-148-3p/SOX-12 Axis.","authors":"Xin Zhang, Ge Wang, Xiaoru Li, Yanqing Liu, Xue Wu, Yazhe Zhou, Jie Liu, Haiying Wang, Rui Jiao, Ying Chen, Qiang Wang","doi":"10.1155/2024/6217134","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gastric cancer (GC) is the most common malignant tumor and ranks third in the world. LncRNA H19 (H19), one of the members of lncRNA, is overexpressed in various tumors. However, many undetermined molecular mechanisms by which H19 promotes GC progression still need to be further investigated. <i>Methodology</i>. A series of experiments was used to confirm the undetermined molecular mechanism including wound healing and transwell assays. <i>Key Results</i>. In this study, a significant upregulation of H19 expression was detected in GC cells and tissues. The poor overall survival was observed in GC patient with high H19 expression. Overexpression of H19 promoted the migration of GC cells, while knockdown of H19 significantly inhibited cell migration. Moreover, miR-148a-3p had a certain negative correlation with H19. Luciferase reporter assay confirmed that H19 could directly bind to miR-148a-3p. As expected, miR-148a mimics inhibited cell migration and invasion induced by H19 overexpression. The above findings proved that H19 functions as a miRNA sponge and verified that miR-148a-3p is the H19-associated miRNA in GC. We also confirmed that SOX-12 expression was upregulated in GC patient's samples. SOX-12 expression was positively correlated with expression of H19 and was able to directly bind to miR-148a-3p. Importantly, <i>in vitro</i> wound healing assay showed that knockout of SOX-12 could reverse the promoting effect of H19 overexpression on cell migration.</p><p><strong>Conclusion: </strong>In conclusion, H19 has certain application value in the diagnosis and prognosis of GC. Specifically, H19 accelerates GCs to migration and metastasis by miR-138a-3p/SOX-12 axis.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":"2024 ","pages":"6217134"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344645/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Cellular Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2024/6217134","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Gastric cancer (GC) is the most common malignant tumor and ranks third in the world. LncRNA H19 (H19), one of the members of lncRNA, is overexpressed in various tumors. However, many undetermined molecular mechanisms by which H19 promotes GC progression still need to be further investigated. Methodology. A series of experiments was used to confirm the undetermined molecular mechanism including wound healing and transwell assays. Key Results. In this study, a significant upregulation of H19 expression was detected in GC cells and tissues. The poor overall survival was observed in GC patient with high H19 expression. Overexpression of H19 promoted the migration of GC cells, while knockdown of H19 significantly inhibited cell migration. Moreover, miR-148a-3p had a certain negative correlation with H19. Luciferase reporter assay confirmed that H19 could directly bind to miR-148a-3p. As expected, miR-148a mimics inhibited cell migration and invasion induced by H19 overexpression. The above findings proved that H19 functions as a miRNA sponge and verified that miR-148a-3p is the H19-associated miRNA in GC. We also confirmed that SOX-12 expression was upregulated in GC patient's samples. SOX-12 expression was positively correlated with expression of H19 and was able to directly bind to miR-148a-3p. Importantly, in vitro wound healing assay showed that knockout of SOX-12 could reverse the promoting effect of H19 overexpression on cell migration.

Conclusion: In conclusion, H19 has certain application value in the diagnosis and prognosis of GC. Specifically, H19 accelerates GCs to migration and metastasis by miR-138a-3p/SOX-12 axis.

LncRNA H19通过miR-148-3p/SOX-12轴促进胃癌转移
背景:胃癌(GC)是最常见的恶性肿瘤,在全球排名第三。LncRNA H19(H19)是lncRNA的成员之一,在多种肿瘤中过度表达。然而,H19促进胃癌进展的许多未确定的分子机制仍有待进一步研究。研究方法通过伤口愈合和转孔实验等一系列实验来证实未确定的分子机制。主要结果。本研究发现 H19 在 GC 细胞和组织中的表达明显上调。在 H19 高表达的 GC 患者中观察到总生存率较低。过表达 H19 会促进 GC 细胞的迁移,而敲除 H19 则会明显抑制细胞的迁移。此外,miR-148a-3p 与 H19 呈一定的负相关。荧光素酶报告实验证实,H19 可直接与 miR-148a-3p 结合。正如预期的那样,miR-148a模拟物抑制了H19过表达诱导的细胞迁移和侵袭。上述发现证明了H19作为miRNA海绵的功能,并验证了miR-148a-3p是GC中与H19相关的miRNA。我们还证实,SOX-12 在 GC 患者样本中表达上调。SOX-12 的表达与 H19 的表达呈正相关,并能直接与 miR-148a-3p 结合。重要的是,体外伤口愈合试验表明,敲除 SOX-12 可以逆转 H19 过表达对细胞迁移的促进作用:总之,H19在GC的诊断和预后中具有一定的应用价值。结论:H19在GC的诊断和预后中具有一定的应用价值,具体而言,H19通过miR-138a-3p/SOX-12轴加速GC的迁移和转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Cellular Pathology
Analytical Cellular Pathology ONCOLOGY-CELL BIOLOGY
CiteScore
4.90
自引率
3.10%
发文量
70
审稿时长
16 weeks
期刊介绍: Analytical Cellular Pathology is a peer-reviewed, Open Access journal that provides a forum for scientists, medical practitioners and pathologists working in the area of cellular pathology. The journal publishes original research articles, review articles, and clinical studies related to cytology, carcinogenesis, cell receptors, biomarkers, diagnostic pathology, immunopathology, and hematology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信