Min Li, Zhifang Qi, Liang Liu, Mingzhu Lou, Shaobo Deng
{"title":"PCA-constrained multi-core matrix fusion network: A novel approach for cancer subtype identification.","authors":"Min Li, Zhifang Qi, Liang Liu, Mingzhu Lou, Shaobo Deng","doi":"10.1142/S0219720024500148","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer subtyping refers to categorizing a particular cancer type into distinct subtypes or subgroups based on a range of molecular characteristics, clinical manifestations, histological features, and other relevant factors. The identification of cancer subtypes can significantly enhance precision in clinical practice and facilitate personalized diagnosis and treatment strategies. Recent advancements in the field have witnessed the emergence of numerous network fusion methods aimed at identifying cancer subtypes. The majority of these fusion algorithms, however, solely rely on the fusion network of a single core matrix for the identification of cancer subtypes and fail to comprehensively capture similarity. To tackle this issue, in this study, we propose a novel cancer subtype recognition method, referred to as PCA-constrained multi-core matrix fusion network (PCA-MM-FN). The PCA-MM-FN algorithm initially employs three distinct methods to obtain three core matrices. Subsequently, the obtained core matrices are projected into a shared subspace using principal component analysis, followed by a weighted network fusion. Lastly, spectral clustering is conducted on the fused network. The results obtained from conducting experiments on the mRNA expression, DNA methylation, and miRNA expression of five TCGA datasets and three multi-omics benchmark datasets demonstrate that the proposed PCA-MM-FN approach exhibits superior accuracy in identifying cancer subtypes compared to the existing methods.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":" ","pages":"2450014"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720024500148","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer subtyping refers to categorizing a particular cancer type into distinct subtypes or subgroups based on a range of molecular characteristics, clinical manifestations, histological features, and other relevant factors. The identification of cancer subtypes can significantly enhance precision in clinical practice and facilitate personalized diagnosis and treatment strategies. Recent advancements in the field have witnessed the emergence of numerous network fusion methods aimed at identifying cancer subtypes. The majority of these fusion algorithms, however, solely rely on the fusion network of a single core matrix for the identification of cancer subtypes and fail to comprehensively capture similarity. To tackle this issue, in this study, we propose a novel cancer subtype recognition method, referred to as PCA-constrained multi-core matrix fusion network (PCA-MM-FN). The PCA-MM-FN algorithm initially employs three distinct methods to obtain three core matrices. Subsequently, the obtained core matrices are projected into a shared subspace using principal component analysis, followed by a weighted network fusion. Lastly, spectral clustering is conducted on the fused network. The results obtained from conducting experiments on the mRNA expression, DNA methylation, and miRNA expression of five TCGA datasets and three multi-omics benchmark datasets demonstrate that the proposed PCA-MM-FN approach exhibits superior accuracy in identifying cancer subtypes compared to the existing methods.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.