On Polynomial Recursive Sequences.

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Theory of Computing Systems Pub Date : 2024-01-01 Epub Date: 2021-06-02 DOI:10.1007/s00224-021-10046-9
Michaël Cadilhac, Filip Mazowiecki, Charles Paperman, Michał Pilipczuk, Géraud Sénizergues
{"title":"On Polynomial Recursive Sequences.","authors":"Michaël Cadilhac, Filip Mazowiecki, Charles Paperman, Michał Pilipczuk, Géraud Sénizergues","doi":"10.1007/s00224-021-10046-9","DOIUrl":null,"url":null,"abstract":"<p><p>We study the expressive power of <i>polynomial recursive sequences</i>, a nonlinear extension of the well-known class of linear recursive sequences. These sequences arise naturally in the study of nonlinear extensions of weighted automata, where (non)expressiveness results translate to class separations. A typical example of a polynomial recursive sequence is <i>b</i> <sub><i>n</i></sub> = <i>n</i>!. Our main result is that the sequence <i>u</i> <sub><i>n</i></sub> = <i>n</i> <sup><i>n</i></sup> is not polynomial recursive.</p>","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343969/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00224-021-10046-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/2 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the expressive power of polynomial recursive sequences, a nonlinear extension of the well-known class of linear recursive sequences. These sequences arise naturally in the study of nonlinear extensions of weighted automata, where (non)expressiveness results translate to class separations. A typical example of a polynomial recursive sequence is b n = n!. Our main result is that the sequence u n = n n is not polynomial recursive.

论多项式递推序列。
我们研究多项式递归序列的表达力,它是著名的线性递归序列类的非线性扩展。这些序列自然出现在加权自动机非线性扩展的研究中,其中(非)表现力结果转化为类分离。多项式递推序列的一个典型例子是 b n = n!我们的主要结果是序列 u n = n n 不是多项式递归的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory of Computing Systems
Theory of Computing Systems 工程技术-计算机:理论方法
CiteScore
1.90
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: TOCS is devoted to publishing original research from all areas of theoretical computer science, ranging from foundational areas such as computational complexity, to fundamental areas such as algorithms and data structures, to focused areas such as parallel and distributed algorithms and architectures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信