Concept design overview: a question of choices and compromise.

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chris Waldon, Stuart I Muldrew, Jonathan Keep, Roel Verhoeven, Terry Thompson, Mark Kisbey-Ascott
{"title":"Concept design overview: a question of choices and compromise.","authors":"Chris Waldon, Stuart I Muldrew, Jonathan Keep, Roel Verhoeven, Terry Thompson, Mark Kisbey-Ascott","doi":"10.1098/rsta.2023.0414","DOIUrl":null,"url":null,"abstract":"<p><p>The Spherical Tokamak for Energy Production (STEP) programme hypothesizes that a compact machine offers a route to reduced capital cost that directly tackles the barrier to entry of this potentially transformative technology. History has shown that with an unsolved, complex and highly interdependent design challenge, there is a need to balance exploration of the problem with progress. Almost all complex systems arise from the evolutionary improvement of simpler systems which is an approach the programme has adopted by working through a virtual natural selection of design families towards a single concept consistent with the initiating hypothesis. Issues are uncovered and solved more rapidly this way because the effort is focused on an end. In this current phase, STEP has had to be an agile fast-moving programme to work with what emerges as well as what was planned, to sit with uncertainty and to embrace self-organizing principles. The complex decision-making and compromises in emerging trades have led to a concept respectful of the tight aspect ratio hypothesis which carefully balances cost, performance and deliverability. It remains a high-risk and high-reward programme, but the character of the challenge is better understood building confidence and enhancing capability to advance the evolving design further.This article is part of the theme issue 'Delivering Fusion Energy - The Spherical Tokamak for Energy Production (STEP)'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423670/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0414","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Spherical Tokamak for Energy Production (STEP) programme hypothesizes that a compact machine offers a route to reduced capital cost that directly tackles the barrier to entry of this potentially transformative technology. History has shown that with an unsolved, complex and highly interdependent design challenge, there is a need to balance exploration of the problem with progress. Almost all complex systems arise from the evolutionary improvement of simpler systems which is an approach the programme has adopted by working through a virtual natural selection of design families towards a single concept consistent with the initiating hypothesis. Issues are uncovered and solved more rapidly this way because the effort is focused on an end. In this current phase, STEP has had to be an agile fast-moving programme to work with what emerges as well as what was planned, to sit with uncertainty and to embrace self-organizing principles. The complex decision-making and compromises in emerging trades have led to a concept respectful of the tight aspect ratio hypothesis which carefully balances cost, performance and deliverability. It remains a high-risk and high-reward programme, but the character of the challenge is better understood building confidence and enhancing capability to advance the evolving design further.This article is part of the theme issue 'Delivering Fusion Energy - The Spherical Tokamak for Energy Production (STEP)'.

概念设计概述:选择与妥协的问题。
用于能源生产的球形托卡马克(STEP)计划假定,紧凑型机器提供了一条降低资本成本的途径,直接解决了这一潜在变革性技术的进入障碍。历史表明,面对尚未解决的、复杂的和高度相互依存的设计挑战,需要在探索问题和取得进展之间取得平衡。几乎所有的复杂系统都是由较简单的系统进化改进而来的,而该计划正是采用了这种方法,通过对设计系列进行虚拟的自然选择,最终形成与最初假设相一致的单一概念。这种方法能更快地发现和解决问题,因为努力的重点是目标。在目前这个阶段,STEP 计划必须是一个敏捷的快速发展计划,既要处理出现的问题,也要处理计划中的问题,要面对不确定性,并接受自我组织原则。在新出现的行业中,复杂的决策和妥协导致了一种尊重紧凑长宽比假设的概念,它谨慎地平衡了成本、性能和可交付性。这仍然是一项高风险、高回报的计划,但人们对挑战的特点有了更好的了解,从而建立了信心,并增强了进一步推进不断发展的设计的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信