Foram Dave, Poonam Vaghela, Bryony Heath, Zuzana Dunster, Elena Dubinina, Dhruma Thakker, Katie Mann, Joe Chadwick, Gaëlle Cane, Bubacarr G Kaira, Omar J Mohammed, Ruhul Choudhury, Samantha Paston, Tina Parsons, Mireille Vankemmelbeke, Lindy Durrant
{"title":"SC134-TCB Targeting Fucosyl-GM1, a T Cell-Engaging Antibody with Potent Antitumor Activity in Preclinical Small Cell Lung Cancer Models.","authors":"Foram Dave, Poonam Vaghela, Bryony Heath, Zuzana Dunster, Elena Dubinina, Dhruma Thakker, Katie Mann, Joe Chadwick, Gaëlle Cane, Bubacarr G Kaira, Omar J Mohammed, Ruhul Choudhury, Samantha Paston, Tina Parsons, Mireille Vankemmelbeke, Lindy Durrant","doi":"10.1158/1535-7163.MCT-24-0187","DOIUrl":null,"url":null,"abstract":"<p><p>Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options. Fucosyl-GM1 (FucGM1) is a glycolipid overexpressed in the majority of SCLC tumors but virtually absent from normal healthy tissues. In this study, we validate a FucGM1-targeting T cell-redirecting bispecific (TCB) antibody for the treatment of SCLC. More than 80% of patient-derived xenograft tissues of SCLC expressed FucGM1, whereas only three normal human tissues: pituitary, thymus, and skin expressed low and focal FucGM1. A FucGM1-targeting TCB (SC134-TCB), based on the Fc-silenced humanized SC134 antibody, exhibited nanomolar efficiency in FucGM1 glycolipid and SCLC cell surface binding. SC134-TCB showed potent ex vivo killing of SCLC cell lines with donor-dependent EC50 ranging from 7.2 pmol/L up to 211.0 pmol/L, effectively activating T cells, with picomolar efficiency, coinciding with target-dependent cytokine production such as IFNγ, IL2, and TNFα and robust proliferation of both CD4 and CD8 T cells. The ex vivo SC134-TCB tumor controlling activity translated into an effective in vivo anti-DMS79 tumor therapy, resulting in 100% tumor-free survival in a human peripheral blood mononuclear cell admixed setting and 40% overall survival (55% tumor growth inhibition) with systemically administered human peripheral blood mononuclear cells. Combination treatment with atezolizumab further enhanced survival and tumor growth inhibition (up to 73%). A 10-fold SC134-TCB dose reduction maintained the strong in vivo antitumor impact, translating into 70% overall survival (P < 0.0001). Whole-blood incubation with SC134-TCB, as well as healthy human primary cells analysis, revealed no target-independent cytokine production. SC134-TCB presents an attractive candidate to deliver an effective immunotherapy treatment option for patients with SCLC.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1626-1638"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532774/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0187","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options. Fucosyl-GM1 (FucGM1) is a glycolipid overexpressed in the majority of SCLC tumors but virtually absent from normal healthy tissues. In this study, we validate a FucGM1-targeting T cell-redirecting bispecific (TCB) antibody for the treatment of SCLC. More than 80% of patient-derived xenograft tissues of SCLC expressed FucGM1, whereas only three normal human tissues: pituitary, thymus, and skin expressed low and focal FucGM1. A FucGM1-targeting TCB (SC134-TCB), based on the Fc-silenced humanized SC134 antibody, exhibited nanomolar efficiency in FucGM1 glycolipid and SCLC cell surface binding. SC134-TCB showed potent ex vivo killing of SCLC cell lines with donor-dependent EC50 ranging from 7.2 pmol/L up to 211.0 pmol/L, effectively activating T cells, with picomolar efficiency, coinciding with target-dependent cytokine production such as IFNγ, IL2, and TNFα and robust proliferation of both CD4 and CD8 T cells. The ex vivo SC134-TCB tumor controlling activity translated into an effective in vivo anti-DMS79 tumor therapy, resulting in 100% tumor-free survival in a human peripheral blood mononuclear cell admixed setting and 40% overall survival (55% tumor growth inhibition) with systemically administered human peripheral blood mononuclear cells. Combination treatment with atezolizumab further enhanced survival and tumor growth inhibition (up to 73%). A 10-fold SC134-TCB dose reduction maintained the strong in vivo antitumor impact, translating into 70% overall survival (P < 0.0001). Whole-blood incubation with SC134-TCB, as well as healthy human primary cells analysis, revealed no target-independent cytokine production. SC134-TCB presents an attractive candidate to deliver an effective immunotherapy treatment option for patients with SCLC.
期刊介绍:
Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.