{"title":"Chondroid Synoviocytic Neoplasm: A Clinicopathologic, Immunohistochemical, and Molecular Genetic Study of a Distinctive Tumor of Synoviocytes","authors":"","doi":"10.1016/j.modpat.2024.100598","DOIUrl":null,"url":null,"abstract":"<div><p>Tumors resembling tenosynovial giant cell tumor (TGCT) but additionally forming chondroid matrix are rare and most often involve the temporomandibular joint (TMJ). We studied 21 tumors consisting of synoviocytes (large, eosinophilic mononuclear cells containing hemosiderin) and chondroid matrix to better understand these unusual neoplasms. The tumors occurred in 10 males and 11 females, in the age group of 31 to 80 years (median, 50 years) and involved the TMJ region (16), extremities (4), and spine (1). As in conventional TGCT, all were composed of synoviocytes, small histiocytes, foamy macrophages, siderophages, and osteoclast-like giant cells in variably hyalinized background. Expansile nodules of large, moderately atypical synoviocytes were present, in addition to “chondroblastoma-like,” “chondroma-like,” or “phosphaturic mesenchymal tumor-like” calcified matrix. The synoviocytes expressed clusterin (17/19) and less often desmin (3/15). The tumors were frequently CSF1 positive by chromogenic in situ hybridization (8/13) but at best weakly positive for CSF1 by immunohistochemistry (0/3). Background small histiocytes were CD163 positive (12/12). All were FGF23 negative (0/10). Cells within lacunae showed a synoviocytic phenotype (clusterin positive; S100 protein and ERG negative). RNA-Seq was successful in 13 cases; fusions were present in 7 tumors, including <em>FN1::TEK</em> (5 cases); <em>FN1::PRG4</em> (2 cases); and <em>MALAT1::FN1</em>, <em>PDGFRA::USP35</em>, and <em>TIMP3::ZCCHC7</em> (1 case each). Three tumors contained more than 1 fusion (<em>FN1::PRG4</em> with <em>TIMP3::ZCCHC7</em>, <em>FN1::TEK</em> with <em>FN1::PRG4</em>, and <em>FN1::TEK</em> with <em>MALAT1::FN1</em>). Clinical follow-up (17 patients; median follow-up duration 38 months; range 4-173 months) showed 13 (76%) to be alive without evidence of disease and 4 (24%) to be alive with persistent/recurrent local disease. No metastases or deaths from disease were observed. We conclude that these unusual tumors represent a distinct category of synoviocytic neoplasia, which we term “chondroid synoviocytic neoplasm,” rather than simply ordinary TGCT with cartilage. Despite potentially worrisome morphologic features, they appear to behave in at most a locally aggressive fashion.</p></div>","PeriodicalId":18706,"journal":{"name":"Modern Pathology","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893395224001789","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumors resembling tenosynovial giant cell tumor (TGCT) but additionally forming chondroid matrix are rare and most often involve the temporomandibular joint (TMJ). We studied 21 tumors consisting of synoviocytes (large, eosinophilic mononuclear cells containing hemosiderin) and chondroid matrix to better understand these unusual neoplasms. The tumors occurred in 10 males and 11 females, in the age group of 31 to 80 years (median, 50 years) and involved the TMJ region (16), extremities (4), and spine (1). As in conventional TGCT, all were composed of synoviocytes, small histiocytes, foamy macrophages, siderophages, and osteoclast-like giant cells in variably hyalinized background. Expansile nodules of large, moderately atypical synoviocytes were present, in addition to “chondroblastoma-like,” “chondroma-like,” or “phosphaturic mesenchymal tumor-like” calcified matrix. The synoviocytes expressed clusterin (17/19) and less often desmin (3/15). The tumors were frequently CSF1 positive by chromogenic in situ hybridization (8/13) but at best weakly positive for CSF1 by immunohistochemistry (0/3). Background small histiocytes were CD163 positive (12/12). All were FGF23 negative (0/10). Cells within lacunae showed a synoviocytic phenotype (clusterin positive; S100 protein and ERG negative). RNA-Seq was successful in 13 cases; fusions were present in 7 tumors, including FN1::TEK (5 cases); FN1::PRG4 (2 cases); and MALAT1::FN1, PDGFRA::USP35, and TIMP3::ZCCHC7 (1 case each). Three tumors contained more than 1 fusion (FN1::PRG4 with TIMP3::ZCCHC7, FN1::TEK with FN1::PRG4, and FN1::TEK with MALAT1::FN1). Clinical follow-up (17 patients; median follow-up duration 38 months; range 4-173 months) showed 13 (76%) to be alive without evidence of disease and 4 (24%) to be alive with persistent/recurrent local disease. No metastases or deaths from disease were observed. We conclude that these unusual tumors represent a distinct category of synoviocytic neoplasia, which we term “chondroid synoviocytic neoplasm,” rather than simply ordinary TGCT with cartilage. Despite potentially worrisome morphologic features, they appear to behave in at most a locally aggressive fashion.
期刊介绍:
Modern Pathology, an international journal under the ownership of The United States & Canadian Academy of Pathology (USCAP), serves as an authoritative platform for publishing top-tier clinical and translational research studies in pathology.
Original manuscripts are the primary focus of Modern Pathology, complemented by impactful editorials, reviews, and practice guidelines covering all facets of precision diagnostics in human pathology. The journal's scope includes advancements in molecular diagnostics and genomic classifications of diseases, breakthroughs in immune-oncology, computational science, applied bioinformatics, and digital pathology.