A stacking ensemble machine learning model for evaluating cardiac toxicity of drugs based on in silico biomarkers.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Yunendah Nur Fuadah, Ali Ikhsanul Qauli, Muhammad Adnan Pramudito, Aroli Marcellinus, Ulfa Latifa Hanum, Ki Moo Lim
{"title":"A stacking ensemble machine learning model for evaluating cardiac toxicity of drugs based on in silico biomarkers.","authors":"Yunendah Nur Fuadah, Ali Ikhsanul Qauli, Muhammad Adnan Pramudito, Aroli Marcellinus, Ulfa Latifa Hanum, Ki Moo Lim","doi":"10.1002/psp4.13229","DOIUrl":null,"url":null,"abstract":"<p><p>This study addresses the critical issue of drug-induced torsades de pointes (TdP) risk assessment, a vital aspect of new drug development due to its association with arrhythmia and sudden cardiac death. Existing methodologies, particularly those reliant on a single biomarker derived from CiPA O'Hara-Rudy (CiPAORdv1.0) ventricular cell model without the hERG dynamic as input to the individual machine learning model, have limitations in capturing the complexity inherent in the comprehensive range of factors influencing drug-induced TdP risk. This study aims to overcome these limitations by proposing a stacking ensemble machine learning approach by integrating multiple in silico biomarkers derived from the CiPAORdv1.0 with hERG dynamic characteristics. The ensemble machine learning model consisted of three artificial neural network (ANN) models as baseline model and support vector machine (SVM), logistic regression (LR), random forest (RF), and extreme gradient boosting (XGBoost) models as meta-classifier. The highest AUC score of 1.00 (0.90-1.00) for high risk, 0.97 (0.84-1.00) for intermediate risk, and 1.00 (0.87-1.00) for low risk were obtained using seven biomarkers derived from the CiPAORdv1.0 with hERG dynamic characteristics. Furthering our investigation, we explored the model's robustness by incorporating interindividual variability into the generation of in silico biomarkers from a population of human ventricular cell models. This study also enabled an analysis of TdP risk classification under high clinical exposure and therapeutic scenarios for several drugs. Additionally, from a sensitivity analysis, we revealed four important ion channels, namely, CaL, NaL, Na, and Kr channels that affect significantly the important biomarkers for TdP risk prediction.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.13229","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the critical issue of drug-induced torsades de pointes (TdP) risk assessment, a vital aspect of new drug development due to its association with arrhythmia and sudden cardiac death. Existing methodologies, particularly those reliant on a single biomarker derived from CiPA O'Hara-Rudy (CiPAORdv1.0) ventricular cell model without the hERG dynamic as input to the individual machine learning model, have limitations in capturing the complexity inherent in the comprehensive range of factors influencing drug-induced TdP risk. This study aims to overcome these limitations by proposing a stacking ensemble machine learning approach by integrating multiple in silico biomarkers derived from the CiPAORdv1.0 with hERG dynamic characteristics. The ensemble machine learning model consisted of three artificial neural network (ANN) models as baseline model and support vector machine (SVM), logistic regression (LR), random forest (RF), and extreme gradient boosting (XGBoost) models as meta-classifier. The highest AUC score of 1.00 (0.90-1.00) for high risk, 0.97 (0.84-1.00) for intermediate risk, and 1.00 (0.87-1.00) for low risk were obtained using seven biomarkers derived from the CiPAORdv1.0 with hERG dynamic characteristics. Furthering our investigation, we explored the model's robustness by incorporating interindividual variability into the generation of in silico biomarkers from a population of human ventricular cell models. This study also enabled an analysis of TdP risk classification under high clinical exposure and therapeutic scenarios for several drugs. Additionally, from a sensitivity analysis, we revealed four important ion channels, namely, CaL, NaL, Na, and Kr channels that affect significantly the important biomarkers for TdP risk prediction.

基于硅学生物标志物评估药物心脏毒性的堆叠集合机器学习模型。
这项研究解决了药物诱导的心搏骤停(TdP)风险评估这一关键问题,由于心搏骤停与心律失常和心脏性猝死有关,因此它是新药开发的一个重要方面。现有的方法,尤其是那些依赖于从 CiPA O'Hara-Rudy (CiPAORdv1.0) 心室细胞模型中提取的单一生物标志物,而不将 hERG 动态作为单个机器学习模型的输入的方法,在捕捉影响药物诱发 TdP 风险的一系列综合因素的内在复杂性方面存在局限性。本研究提出了一种堆叠集合机器学习方法,将从 CiPAORdv1.0 中获得的多个硅学生物标志物与 hERG 动态特征整合在一起,旨在克服这些局限性。该集合机器学习模型由三个人工神经网络(ANN)模型作为基线模型,支持向量机(SVM)、逻辑回归(LR)、随机森林(RF)和极端梯度提升(XGBoost)模型作为元分类器。使用从具有 hERG 动态特征的 CiPAORdv1.0 中提取的 7 个生物标记物,高风险的 AUC 得分为 1.00(0.90-1.00),中风险的 AUC 得分为 0.97(0.84-1.00),低风险的 AUC 得分为 1.00(0.87-1.00)。在进一步研究中,我们将个体间的变异性纳入了从人类心室细胞模型群体中生成的硅学生物标记物中,从而探索了该模型的稳健性。这项研究还对几种药物在高临床暴露和治疗情况下的 TdP 风险分类进行了分析。此外,通过敏感性分析,我们发现了四个重要的离子通道,即 CaL、NaL、Na 和 Kr 通道,它们对 TdP 风险预测的重要生物标志物有重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信