Huan Wu , Chenggong Sun , Wenyu Cao , Qiuli Teng , Xinyue Ma , Helgi B. Schiöth , Ruifen Dong , Qing Zhang , Beihua Kong
{"title":"Blockade of the lncRNA-PART1-PHB2 axis confers resistance to PARP inhibitor and promotes cellular senescence in ovarian cancer","authors":"Huan Wu , Chenggong Sun , Wenyu Cao , Qiuli Teng , Xinyue Ma , Helgi B. Schiöth , Ruifen Dong , Qing Zhang , Beihua Kong","doi":"10.1016/j.canlet.2024.217192","DOIUrl":null,"url":null,"abstract":"<div><p>PARPi is currently the most important breakthrough in the treatment of ovarian cancer in decades, and it has been integrated into the initial maintenance therapy for ovarian cancer. However, the mechanism leading to PARPi resistance remains unelucidated. Our study aims to screen novel targets to better predict and reverse resistance to PARPi and explore the potential mechanism. Here, we conducted a comparative analysis of differentially expressed genes between platinum-sensitive and platinum-resistant groups within the TCGA ovarian cancer cohort. The analysis indicated that lncRNA PART1 was significantly highly expressed in platinum-sensitive patients compared to platinum-resistant individuals in TCGA-OV cohort and further validated in the GEO dataset and Qilu hospital cohort. Moreover, the upregulation of PART1 was positively correlated with a favorable prognosis in ovarian cancer. Furthermore, in vitro and in vivo experiments showed that inhibition of PART1 conferred resistance to both cisplatin and PARP inhibitor and promoted cellular senescence. Senescent cells are more resistant to chemotherapeutics. RNA antisense purification and RNA immunoprecipitation assays revealed an interaction between PART1 and PHB2, a crucial mitophagy receptor. Knockdown of PART1 could promote the degradation of PHB2, impairing mitophagy and leading to cellular senescence. Rescue assays indicated that overexpression of PHB2 remarkably diminished the resistance to PARPi and cellular senescence caused by PART1 knockdown. PDX models were utilized to further confirm the findings. Altogether, our study demonstrated that lncRNA PART1 has the potential to serve as a novel promising target to reverse resistance to PARPi and improve prognosis in ovarian cancer.</p></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"602 ","pages":"Article 217192"},"PeriodicalIF":9.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304383524005871/pdfft?md5=6828b4509d3a79f06c8a94ee07c8cb92&pid=1-s2.0-S0304383524005871-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383524005871","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PARPi is currently the most important breakthrough in the treatment of ovarian cancer in decades, and it has been integrated into the initial maintenance therapy for ovarian cancer. However, the mechanism leading to PARPi resistance remains unelucidated. Our study aims to screen novel targets to better predict and reverse resistance to PARPi and explore the potential mechanism. Here, we conducted a comparative analysis of differentially expressed genes between platinum-sensitive and platinum-resistant groups within the TCGA ovarian cancer cohort. The analysis indicated that lncRNA PART1 was significantly highly expressed in platinum-sensitive patients compared to platinum-resistant individuals in TCGA-OV cohort and further validated in the GEO dataset and Qilu hospital cohort. Moreover, the upregulation of PART1 was positively correlated with a favorable prognosis in ovarian cancer. Furthermore, in vitro and in vivo experiments showed that inhibition of PART1 conferred resistance to both cisplatin and PARP inhibitor and promoted cellular senescence. Senescent cells are more resistant to chemotherapeutics. RNA antisense purification and RNA immunoprecipitation assays revealed an interaction between PART1 and PHB2, a crucial mitophagy receptor. Knockdown of PART1 could promote the degradation of PHB2, impairing mitophagy and leading to cellular senescence. Rescue assays indicated that overexpression of PHB2 remarkably diminished the resistance to PARPi and cellular senescence caused by PART1 knockdown. PDX models were utilized to further confirm the findings. Altogether, our study demonstrated that lncRNA PART1 has the potential to serve as a novel promising target to reverse resistance to PARPi and improve prognosis in ovarian cancer.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.