Separator engineering: Assisting lithium salt dissociation and constructing LiF-rich solid electrolyte interphases for high-rate lithium metal batteries.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-01-01 Epub Date: 2024-08-22 DOI:10.1016/j.jcis.2024.08.151
Changyong Zhao, Hanyan Wu, Xuejie Gao, Chen Cheng, Shuiping Cai, Xiaofei Yang, Runcang Sun
{"title":"Separator engineering: Assisting lithium salt dissociation and constructing LiF-rich solid electrolyte interphases for high-rate lithium metal batteries.","authors":"Changyong Zhao, Hanyan Wu, Xuejie Gao, Chen Cheng, Shuiping Cai, Xiaofei Yang, Runcang Sun","doi":"10.1016/j.jcis.2024.08.151","DOIUrl":null,"url":null,"abstract":"<p><p>Challenges associated with lithium dendrite growth and the formation of dead lithium significantly limit the achievable energy density of lithium metal batteries (LMBs), particularly under high operating current densities. Our innovative design employs a state-of-the-art 2500 separator featuring a meticulously engineered cellulose acetate (CA) coating (CA@2500) to suppress dendrite nucleation and propagation. The CO functional groups in CA enhances charge transfer kinetics and triggering the decomposition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), which leads to the formation of a more robust solid electrolyte interphase (SEI) composed primarily of LiF. Moreover, the introduction of polar functional groups in the CA enhances the separator's hydrophilic properties, facilitating the uniform Li<sup>+</sup> flux and creating a conductive pathway for efficient lithium migration. As a result, the CA@2500 separator exhibits a high lithium-ion transfer number (0.88) and conductivity. The lithium symmetric cell assembles with the CA@2500 separator displays a stable cycling performance over 5500 h at a current density and capacity of 10 mA cm<sup>-2</sup> and 10 mAh cm<sup>-2</sup>, respectively. Additionally, LPF battery with CA@2500 separator shows an excellent capacity retention at 0.2 C with an average decay of 0.055 % per cycle. Moreover, a high capacity of 105 mAh g<sup>-1</sup> is maintained after 500 cycles at 5 C with an average decay of only 0.027 % per cycle. This work achieved high stability of LMBs through simplified engineering.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.08.151","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Challenges associated with lithium dendrite growth and the formation of dead lithium significantly limit the achievable energy density of lithium metal batteries (LMBs), particularly under high operating current densities. Our innovative design employs a state-of-the-art 2500 separator featuring a meticulously engineered cellulose acetate (CA) coating (CA@2500) to suppress dendrite nucleation and propagation. The CO functional groups in CA enhances charge transfer kinetics and triggering the decomposition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), which leads to the formation of a more robust solid electrolyte interphase (SEI) composed primarily of LiF. Moreover, the introduction of polar functional groups in the CA enhances the separator's hydrophilic properties, facilitating the uniform Li+ flux and creating a conductive pathway for efficient lithium migration. As a result, the CA@2500 separator exhibits a high lithium-ion transfer number (0.88) and conductivity. The lithium symmetric cell assembles with the CA@2500 separator displays a stable cycling performance over 5500 h at a current density and capacity of 10 mA cm-2 and 10 mAh cm-2, respectively. Additionally, LPF battery with CA@2500 separator shows an excellent capacity retention at 0.2 C with an average decay of 0.055 % per cycle. Moreover, a high capacity of 105 mAh g-1 is maintained after 500 cycles at 5 C with an average decay of only 0.027 % per cycle. This work achieved high stability of LMBs through simplified engineering.

分离器工程:协助锂盐解离,为高倍率锂金属电池构建富含锂F的固体电解质相间层。
锂枝晶的生长和死锂的形成极大地限制了锂金属电池(LMB)的能量密度,尤其是在高工作电流密度下。我们的创新设计采用了最先进的 2500 分离器,该分离器具有精心设计的醋酸纤维素 (CA) 涂层 (CA@2500),可抑制枝晶的成核和传播。CA中的CO官能团增强了电荷转移动力学,引发了双(三氟甲烷磺酰基)亚胺锂(LiTFSI)的分解,从而形成了主要由LiF组成的更坚固的固态电解质间相(SEI)。此外,CA 中极性官能团的引入增强了隔膜的亲水性,促进了均匀的 Li+ 通量,并为锂的高效迁移创造了导电途径。因此,CA@2500 分离剂具有很高的锂离子转移数(0.88)和导电性。在电流密度和容量分别为 10 mA cm-2 和 10 mAh cm-2 的情况下,使用 CA@2500 隔膜组装的锂对称电池可稳定循环 5500 小时。此外,采用 CA@2500 隔膜的 LPF 电池在 0.2 摄氏度条件下显示出极佳的容量保持能力,每个循环的平均衰减率为 0.055%。此外,在 5 摄氏度条件下循环 500 次后,仍能保持 105 mAh g-1 的高容量,每次循环的平均衰减率仅为 0.027%。这项工作通过简化工程实现了 LMB 的高稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信