{"title":"Stand-up indulgent gathering on lines","authors":"Quentin Bramas , Sayaka Kamei , Anissa Lamani , Sébastien Tixeuil","doi":"10.1016/j.tcs.2024.114796","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a variant of the crash-fault gathering problem called stand-up indulgent gathering (SUIG). In this problem, a group of mobile robots must eventually gather at a single location, which is not known in advance. If no robots crash, they must all meet at the same location. However, if one or more robots crash at a single location, all non-crashed robots must eventually gather at that location. The SUIG problem was first introduced for robots operating in a two-dimensional continuous Euclidean space, with most solutions relying on the ability of robots to move a prescribed (real) distance at each time instant.</p><p>In this paper, we investigate the SUIG problem for robots operating in a discrete universe (i.e., a graph) where they can only move one unit of distance (i.e., to an adjacent node) at each time instant. Specifically, we focus on line-shaped networks and characterize the solvability of the SUIG problem for oblivious robots without multiplicity detection.</p></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1016 ","pages":"Article 114796"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524004134","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a variant of the crash-fault gathering problem called stand-up indulgent gathering (SUIG). In this problem, a group of mobile robots must eventually gather at a single location, which is not known in advance. If no robots crash, they must all meet at the same location. However, if one or more robots crash at a single location, all non-crashed robots must eventually gather at that location. The SUIG problem was first introduced for robots operating in a two-dimensional continuous Euclidean space, with most solutions relying on the ability of robots to move a prescribed (real) distance at each time instant.
In this paper, we investigate the SUIG problem for robots operating in a discrete universe (i.e., a graph) where they can only move one unit of distance (i.e., to an adjacent node) at each time instant. Specifically, we focus on line-shaped networks and characterize the solvability of the SUIG problem for oblivious robots without multiplicity detection.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.