{"title":"Dimension reduction for Quasi-Monte Carlo methods via quadratic regression","authors":"Junichi Imai , Ken Seng Tan","doi":"10.1016/j.matcom.2024.08.016","DOIUrl":null,"url":null,"abstract":"<div><p>Quasi-Monte Carlo (QMC) methods have been gaining popularity in computational finance as they are competitive alternatives to Monte Carlo methods that can accelerate numerical accuracy. This paper develops a new approach for reducing the effective dimension combined with a randomized QMC method. A distinctive feature of the proposed approach is its sample-based transformation that enables us to choose a flexible manipulation via regression. In the proposed approach, the first step is to perform a regression using the samples to estimate the parameters of the regression model. An optimal transformation is proposed based on the regression result to minimize the effective dimension. An advantage of this approach is that adopting a statistical approach allows greater flexibility in selecting the regression model. In addition to a linear model, this paper proposes a dimension reduction method based on a linear-quadratic model for regression. In numerical experiments, we focus on pricing different types of exotic options to test the effectiveness of the proposed approach. The numerical results show that different regression models are chosen depending on the underlying risk process and the type of derivative securities. In particular, we show several examples where the proposed method works while existing dimension reductions are ineffective.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378475424003185/pdfft?md5=faa81dfc482a8f8a1e66a2e0a08e568e&pid=1-s2.0-S0378475424003185-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003185","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quasi-Monte Carlo (QMC) methods have been gaining popularity in computational finance as they are competitive alternatives to Monte Carlo methods that can accelerate numerical accuracy. This paper develops a new approach for reducing the effective dimension combined with a randomized QMC method. A distinctive feature of the proposed approach is its sample-based transformation that enables us to choose a flexible manipulation via regression. In the proposed approach, the first step is to perform a regression using the samples to estimate the parameters of the regression model. An optimal transformation is proposed based on the regression result to minimize the effective dimension. An advantage of this approach is that adopting a statistical approach allows greater flexibility in selecting the regression model. In addition to a linear model, this paper proposes a dimension reduction method based on a linear-quadratic model for regression. In numerical experiments, we focus on pricing different types of exotic options to test the effectiveness of the proposed approach. The numerical results show that different regression models are chosen depending on the underlying risk process and the type of derivative securities. In particular, we show several examples where the proposed method works while existing dimension reductions are ineffective.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.