Joshua P. Ebenezer , Zaixi Shang , Yongjun Wu , Hai Wei , Sriram Sethuraman , Alan C. Bovik
{"title":"HDR-ChipQA: No-reference quality assessment on High Dynamic Range videos","authors":"Joshua P. Ebenezer , Zaixi Shang , Yongjun Wu , Hai Wei , Sriram Sethuraman , Alan C. Bovik","doi":"10.1016/j.image.2024.117191","DOIUrl":null,"url":null,"abstract":"<div><p>We present a no-reference video quality model and algorithm that delivers standout performance for High Dynamic Range (HDR) videos, which we call HDR-ChipQA. HDR videos represent wider ranges of luminances, details, and colors than Standard Dynamic Range (SDR) videos. The growing adoption of HDR in massively scaled video networks has driven the need for video quality assessment (VQA) algorithms that better account for distortions on HDR content. In particular, standard VQA models may fail to capture conspicuous distortions at the extreme ends of the dynamic range, because the features that drive them may be dominated by distortions that pervade the mid-ranges of the signal. We introduce a new approach whereby a local expansive nonlinearity emphasizes distortions occurring at the higher and lower ends of the local luma range, allowing for the definition of additional quality-aware features that are computed along a separate path. These features are not HDR-specific, and also improve VQA on SDR video contents, albeit to a reduced degree. We show that this preprocessing step significantly boosts the power of distortion-sensitive natural video statistics (NVS) features when used to predict the quality of HDR content. In similar manner, we separately compute novel wide-gamut color features using the same nonlinear processing steps. We have found that our model significantly outperforms SDR VQA algorithms on the only publicly available, comprehensive HDR database, while also attaining state-of-the-art performance on SDR content.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"129 ","pages":"Article 117191"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000924","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We present a no-reference video quality model and algorithm that delivers standout performance for High Dynamic Range (HDR) videos, which we call HDR-ChipQA. HDR videos represent wider ranges of luminances, details, and colors than Standard Dynamic Range (SDR) videos. The growing adoption of HDR in massively scaled video networks has driven the need for video quality assessment (VQA) algorithms that better account for distortions on HDR content. In particular, standard VQA models may fail to capture conspicuous distortions at the extreme ends of the dynamic range, because the features that drive them may be dominated by distortions that pervade the mid-ranges of the signal. We introduce a new approach whereby a local expansive nonlinearity emphasizes distortions occurring at the higher and lower ends of the local luma range, allowing for the definition of additional quality-aware features that are computed along a separate path. These features are not HDR-specific, and also improve VQA on SDR video contents, albeit to a reduced degree. We show that this preprocessing step significantly boosts the power of distortion-sensitive natural video statistics (NVS) features when used to predict the quality of HDR content. In similar manner, we separately compute novel wide-gamut color features using the same nonlinear processing steps. We have found that our model significantly outperforms SDR VQA algorithms on the only publicly available, comprehensive HDR database, while also attaining state-of-the-art performance on SDR content.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.