Robust baseline correction for Raman spectra by constrained Gaussian radial basis function fitting

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS
Sungwon Park, Hongjoong Kim
{"title":"Robust baseline correction for Raman spectra by constrained Gaussian radial basis function fitting","authors":"Sungwon Park,&nbsp;Hongjoong Kim","doi":"10.1016/j.chemolab.2024.105205","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate baseline correction is a fundamental requirement for extracting meaningful spectral information and enabling precise quantitative analysis using Raman spectroscopy. Although numerous baseline correction techniques have been developed, they often require meticulous parameter adjustments and yield inconsistent results. To address these challenges, we have introduced a novel approach, namely constrained Gaussian radial basis function fitting (CGF). Our method involves solving a curve-fitting problem using Gaussian radial basis functions under specific constraints. To ensure stability and efficiency, we developed a linear programming algorithm for the proposed approach. We evaluated the performance of CGF using simulated Raman spectra and demonstrated its robustness across various scenarios, including changes in data length and noise levels. In contrast to standard methods, which frequently require complicated parameter adjustments and may exhibit varying errors, our approach provides a simple parameter search and consistently achieves low errors. We further assessed CGF using real Raman spectra, leading to enhanced accuracy in the quantitative analysis of the Raman spectra of chemical warfare agents. Our results emphasize the potential of CGF as a valuable tool for Raman spectroscopy data analysis, significantly advancing sophisticated analytical techniques.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"253 ","pages":"Article 105205"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016974392400145X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate baseline correction is a fundamental requirement for extracting meaningful spectral information and enabling precise quantitative analysis using Raman spectroscopy. Although numerous baseline correction techniques have been developed, they often require meticulous parameter adjustments and yield inconsistent results. To address these challenges, we have introduced a novel approach, namely constrained Gaussian radial basis function fitting (CGF). Our method involves solving a curve-fitting problem using Gaussian radial basis functions under specific constraints. To ensure stability and efficiency, we developed a linear programming algorithm for the proposed approach. We evaluated the performance of CGF using simulated Raman spectra and demonstrated its robustness across various scenarios, including changes in data length and noise levels. In contrast to standard methods, which frequently require complicated parameter adjustments and may exhibit varying errors, our approach provides a simple parameter search and consistently achieves low errors. We further assessed CGF using real Raman spectra, leading to enhanced accuracy in the quantitative analysis of the Raman spectra of chemical warfare agents. Our results emphasize the potential of CGF as a valuable tool for Raman spectroscopy data analysis, significantly advancing sophisticated analytical techniques.

通过约束高斯径向基函数拟合对拉曼光谱进行稳健的基线校正
准确的基线校正是利用拉曼光谱提取有意义的光谱信息并进行精确定量分析的基本要求。虽然已经开发出了许多基线校正技术,但这些技术往往需要对参数进行细致的调整,而且产生的结果也不一致。为了应对这些挑战,我们引入了一种新方法,即约束高斯径向基函数拟合(CGF)。我们的方法涉及在特定约束条件下使用高斯径向基函数求解曲线拟合问题。为了确保稳定性和效率,我们为所提出的方法开发了一种线性编程算法。我们使用模拟拉曼光谱评估了 CGF 的性能,并证明了它在各种情况下的鲁棒性,包括数据长度和噪声水平的变化。标准方法通常需要进行复杂的参数调整,并可能出现不同的误差,与之相比,我们的方法只需进行简单的参数搜索,并能始终保持较低的误差。我们使用真实拉曼光谱进一步评估了 CGF,从而提高了化学战剂拉曼光谱定量分析的准确性。我们的研究结果强调了 CGF 作为拉曼光谱数据分析宝贵工具的潜力,极大地推动了复杂分析技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信