Crystal plasticity-phase–field based analyses of interfacial microstructural evolution during dynamic recrystallization in a dual phase titanium alloy

IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL
Ritam Chatterjee , Aayush Trivedi , S.V.S. Narayana Murty , Alankar Alankar
{"title":"Crystal plasticity-phase–field based analyses of interfacial microstructural evolution during dynamic recrystallization in a dual phase titanium alloy","authors":"Ritam Chatterjee ,&nbsp;Aayush Trivedi ,&nbsp;S.V.S. Narayana Murty ,&nbsp;Alankar Alankar","doi":"10.1016/j.ijplas.2024.104087","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, an integrated crystal plasticity finite element–phase–field (CPFE–PF) model is developed to examine dynamic recrystallization (DRX) in a dual phase Ti alloy. The CP framework is coupled with PF by updating the free energy density with energy contributions due to plasticity. The evolution of grain boundaries through evolving non-conserved order parameters in the PF model is tracked using the Allen–Cahn equation. Nucleation is allowed to occur if the dislocation density exceeds a critical value. DRX is studied in various Ti morphologies such as an <span><math><mrow><mi>α</mi><mo>−</mo></mrow></math></span>Ti single crystal containing a stiff elastoplastic particle, <span><math><mi>α</mi></math></span>-Ti bicrystals with low and high misorientation between grains, an <span><math><mrow><mi>α</mi><mo>−</mo><mi>β</mi></mrow></math></span> bicrystal and a globular <span><math><mrow><mi>α</mi><mo>−</mo><mi>β</mi></mrow></math></span> Ti structure with <span><math><mi>β</mi></math></span> phase at <span><math><mrow><mi>α</mi><mo>−</mo><mi>α</mi></mrow></math></span> interfaces. For an <span><math><mrow><mi>α</mi><mo>−</mo></mrow></math></span>Ti bicrystal, a high misorientation facilitates the onset of DRX at the <span><math><mrow><mi>α</mi><mo>−</mo><mi>α</mi></mrow></math></span> interface at a significantly lower strain than the bicrystal with low misorientation. In an <span><math><mrow><mi>α</mi><mo>−</mo><mi>β</mi></mrow></math></span> bicrystal, DRX is only observed at the <span><math><mrow><mi>α</mi><mo>−</mo><mi>β</mi></mrow></math></span> interface. For the globular morphology, nucleation is observed at both <span><math><mrow><mi>α</mi><mo>−</mo><mi>β</mi></mrow></math></span> interfaces and inside <span><math><mi>α</mi></math></span> grains, which is consistent with previous experimental observations for a similar morphology. Nucleation inside <span><math><mi>α</mi></math></span> grains is explained by the correlation between SSD density and misorientation indicators such as KAM and GROD at the nucleus site. To correlate slip activity with nucleation propensity immediately prior to different nucleation events, the dislocation density, shear rate and Schmid factors on different slip systems are evaluated at nucleation sites.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"181 ","pages":"Article 104087"},"PeriodicalIF":9.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924002146","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, an integrated crystal plasticity finite element–phase–field (CPFE–PF) model is developed to examine dynamic recrystallization (DRX) in a dual phase Ti alloy. The CP framework is coupled with PF by updating the free energy density with energy contributions due to plasticity. The evolution of grain boundaries through evolving non-conserved order parameters in the PF model is tracked using the Allen–Cahn equation. Nucleation is allowed to occur if the dislocation density exceeds a critical value. DRX is studied in various Ti morphologies such as an αTi single crystal containing a stiff elastoplastic particle, α-Ti bicrystals with low and high misorientation between grains, an αβ bicrystal and a globular αβ Ti structure with β phase at αα interfaces. For an αTi bicrystal, a high misorientation facilitates the onset of DRX at the αα interface at a significantly lower strain than the bicrystal with low misorientation. In an αβ bicrystal, DRX is only observed at the αβ interface. For the globular morphology, nucleation is observed at both αβ interfaces and inside α grains, which is consistent with previous experimental observations for a similar morphology. Nucleation inside α grains is explained by the correlation between SSD density and misorientation indicators such as KAM and GROD at the nucleus site. To correlate slip activity with nucleation propensity immediately prior to different nucleation events, the dislocation density, shear rate and Schmid factors on different slip systems are evaluated at nucleation sites.

基于晶体塑性相场的双相钛合金动态再结晶过程中界面微结构演变分析
本研究开发了一种集成晶体塑性有限元-相场(CPFE-PF)模型,用于研究双相钛合金中的动态再结晶(DRX)。CP 框架与 PF 相耦合,通过更新自由能密度与塑性导致的能量贡献来实现。使用 Allen-Cahn 方程跟踪 PF 模型中通过非保留阶次参数演变的晶界演化。如果位错密度超过临界值,则允许发生成核。DRX 在不同的钛形态中进行了研究,如含有刚性弹塑性颗粒的 α-Ti 单晶、晶粒间具有低和高错位取向的 α-Ti 双晶、α-β 双晶和在α-α 接口处具有 β 相的球状 α-β Ti 结构。对于α-Ti 双晶,高取向错位有助于在α-α界面上发生 DRX,其应变明显低于低取向错位的双晶。在 α-β 双晶中,只有在 α-β 界面才能观察到 DRX。对于球状形态,在 α-β 界面和 α 晶粒内部都能观察到成核现象,这与之前对类似形态的实验观察结果一致。α晶粒内部的成核可通过核部位的SSD密度与KAM和GROD等错取向指标之间的相关性来解释。为了将不同成核事件发生前的滑移活动与成核倾向相关联,在成核点评估了不同滑移系统上的位错密度、剪切速率和施密德因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信