Towards accurate and efficient diagnoses in nephropathology: An AI-based approach for assessing kidney transplant rejection

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
{"title":"Towards accurate and efficient diagnoses in nephropathology: An AI-based approach for assessing kidney transplant rejection","authors":"","doi":"10.1016/j.csbj.2024.08.011","DOIUrl":null,"url":null,"abstract":"<div><p>The Banff classification is useful for diagnosing renal transplant rejection. However, it has limitations due to subjectivity and varying concordance in physicians' assessments. Artificial intelligence (AI) can help standardize research, increase objectivity and accurately quantify morphological characteristics, improving reproducibility in clinical practice. This study aims to develop an AI-based solutions for diagnosing acute kidney transplant rejection by introducing automated evaluation of prognostic morphological patterns. The proposed approach aims to help accurately distinguish borderline changes from rejection. We trained a deep-learning model utilizing a fine-tuned Mask R-CNN architecture which achieved a mean Average Precision value of 0.74 for the segmentation of renal tissue structures. A strong positive nonlinear correlation was found between the measured infiltration areas and fibrosis, indicating the model's potential for assessing these parameters in kidney biopsies. The ROC analysis showed a high predictive ability for distinguishing between ci and i scores based on infiltration area and fibrosis area measurements. The AI model demonstrated high precision in predicting clinical scores which makes it a promising AI assisting tool for pathologists. The application of AI in nephropathology has a potential for advancements, including automated morphometric evaluation, 3D histological models and faster processing to enhance diagnostic accuracy and efficiency.</p></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2001037024002691/pdfft?md5=0c5e6d6c9e074579fb1684e1d90ca60a&pid=1-s2.0-S2001037024002691-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037024002691","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Banff classification is useful for diagnosing renal transplant rejection. However, it has limitations due to subjectivity and varying concordance in physicians' assessments. Artificial intelligence (AI) can help standardize research, increase objectivity and accurately quantify morphological characteristics, improving reproducibility in clinical practice. This study aims to develop an AI-based solutions for diagnosing acute kidney transplant rejection by introducing automated evaluation of prognostic morphological patterns. The proposed approach aims to help accurately distinguish borderline changes from rejection. We trained a deep-learning model utilizing a fine-tuned Mask R-CNN architecture which achieved a mean Average Precision value of 0.74 for the segmentation of renal tissue structures. A strong positive nonlinear correlation was found between the measured infiltration areas and fibrosis, indicating the model's potential for assessing these parameters in kidney biopsies. The ROC analysis showed a high predictive ability for distinguishing between ci and i scores based on infiltration area and fibrosis area measurements. The AI model demonstrated high precision in predicting clinical scores which makes it a promising AI assisting tool for pathologists. The application of AI in nephropathology has a potential for advancements, including automated morphometric evaluation, 3D histological models and faster processing to enhance diagnostic accuracy and efficiency.

在肾脏病理学中实现准确高效的诊断:基于人工智能的肾移植排斥评估方法
班夫分类法有助于诊断肾移植排斥反应。然而,由于医生评估的主观性和一致性不同,它存在局限性。人工智能(AI)有助于规范研究、提高客观性并准确量化形态学特征,从而提高临床实践的可重复性。本研究旨在通过引入预后形态学模式的自动评估,开发一种基于人工智能的急性肾移植排斥反应诊断解决方案。所提出的方法旨在帮助准确区分边缘变化和排斥反应。我们利用微调掩码 R-CNN 架构训练了一个深度学习模型,该模型在分割肾组织结构时的平均精度值达到了 0.74。测量到的浸润面积与纤维化之间存在很强的正非线性相关性,这表明该模型具有评估肾活检中这些参数的潜力。ROC 分析表明,基于浸润面积和纤维化面积测量值的 ci 和 i 评分具有很高的预测能力。该人工智能模型在预测临床评分方面表现出很高的精确度,这使其成为病理学家很有前途的人工智能辅助工具。人工智能在肾脏病理学中的应用具有很大的发展潜力,包括自动形态计量评估、三维组织学模型和更快的处理速度,以提高诊断的准确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信