Pablo Sanz-Martinez, Rayene Berkane, Alexandra Stolz
{"title":"Function of CSNK2/CK2 selectively affects the endoplasmic reticulum and the Golgi apparatus in mtor-mediated autophagy induction.","authors":"Pablo Sanz-Martinez, Rayene Berkane, Alexandra Stolz","doi":"10.1080/15548627.2024.2395725","DOIUrl":null,"url":null,"abstract":"<p><p>Selective macroautophagy/autophagy of the endoplasmic reticulum, known as reticulophagy/ER-phagy, is essential to maintain ER homeostasis. We recently showed that members of the autophagy receptor family RETREG/FAM134 are regulated by phosphorylation-dependent ubiquitination. In an unbiased screen we had identified several kinases downstream of MTOR with profound impact on reticulophagy flux, including ATR and CSNK2/CK2. Inhibition of CSNK2 by SGC-CK2-1 prevented regulatory ubiquitination of RETREG1/FAM134B and RETREG3/FAM134C upon autophagy activation as well as the formation of high-density RETREG1- and RETREG3-clusters. Here we report on additional resource data of global proteomics upon CSNK2 and ATR inhibition, respectively. Our data suggests that the function of CSNK2 is mainly limited to the ER/reticulophagy and Golgi/Golgiphagy, while ATR inhibition by VE-822 affects the vast majority of organelles/selective autophagy pathways.<b>Abbreviation:</b> ATRi: ATR inhibitor VE-822; CSNK2i: CSNK2 inhibitor SGC-CK2-1; ER: endoplasmic reticulum.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2024.2395725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Selective macroautophagy/autophagy of the endoplasmic reticulum, known as reticulophagy/ER-phagy, is essential to maintain ER homeostasis. We recently showed that members of the autophagy receptor family RETREG/FAM134 are regulated by phosphorylation-dependent ubiquitination. In an unbiased screen we had identified several kinases downstream of MTOR with profound impact on reticulophagy flux, including ATR and CSNK2/CK2. Inhibition of CSNK2 by SGC-CK2-1 prevented regulatory ubiquitination of RETREG1/FAM134B and RETREG3/FAM134C upon autophagy activation as well as the formation of high-density RETREG1- and RETREG3-clusters. Here we report on additional resource data of global proteomics upon CSNK2 and ATR inhibition, respectively. Our data suggests that the function of CSNK2 is mainly limited to the ER/reticulophagy and Golgi/Golgiphagy, while ATR inhibition by VE-822 affects the vast majority of organelles/selective autophagy pathways.Abbreviation: ATRi: ATR inhibitor VE-822; CSNK2i: CSNK2 inhibitor SGC-CK2-1; ER: endoplasmic reticulum.