Ictal-onset localization through effective connectivity analysis based on RNN-GC with intracranial EEG signals in patients with epilepsy.

Q1 Computer Science
Xiaojia Wang, Yanchao Liu, Chunfeng Yang
{"title":"Ictal-onset localization through effective connectivity analysis based on RNN-GC with intracranial EEG signals in patients with epilepsy.","authors":"Xiaojia Wang, Yanchao Liu, Chunfeng Yang","doi":"10.1186/s40708-024-00233-y","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy is one of the most common clinical diseases of the nervous system. The occurrence of epilepsy will bring many serious consequences, and some patients with epilepsy will develop drug-resistant epilepsy. Surgery is an effective means to treat this kind of patients, and lesion localization can provide a basis for surgery. The purpose of this study was to explore the functional types and connectivity evolution patterns of relevant regions of the brain during seizures. We used intracranial EEG signals from patients with epilepsy as the research object, and the method used was GRU-GC. The role of the corresponding area of each channel in the seizure process was determined by the introduction of group analysis. The importance of each area was analysed by introducing the betweenness centrality and PageRank centrality. The experimental results show that the classification method based on effective connectivity has high accuracy, and the role of the different regions of the brain could also change during the seizures. The relevant methods in this study have played an important role in preoperative assessment and revealing the functional evolution patterns of various relevant regions of the brain during seizures.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"22"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343958/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00233-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Epilepsy is one of the most common clinical diseases of the nervous system. The occurrence of epilepsy will bring many serious consequences, and some patients with epilepsy will develop drug-resistant epilepsy. Surgery is an effective means to treat this kind of patients, and lesion localization can provide a basis for surgery. The purpose of this study was to explore the functional types and connectivity evolution patterns of relevant regions of the brain during seizures. We used intracranial EEG signals from patients with epilepsy as the research object, and the method used was GRU-GC. The role of the corresponding area of each channel in the seizure process was determined by the introduction of group analysis. The importance of each area was analysed by introducing the betweenness centrality and PageRank centrality. The experimental results show that the classification method based on effective connectivity has high accuracy, and the role of the different regions of the brain could also change during the seizures. The relevant methods in this study have played an important role in preoperative assessment and revealing the functional evolution patterns of various relevant regions of the brain during seizures.

基于 RNN-GC 与癫痫患者颅内脑电图信号的有效连通性分析,进行直角发病定位。
癫痫是临床上最常见的神经系统疾病之一。癫痫的发生会带来很多严重的后果,部分癫痫患者会产生耐药性癫痫。手术是治疗这类患者的有效手段,而病灶定位可以为手术提供依据。本研究旨在探讨癫痫发作时大脑相关区域的功能类型和连接演变模式。我们以癫痫患者的颅内脑电信号为研究对象,采用 GRU-GC 方法。通过引入分组分析,确定了每个通道的相应区域在癫痫发作过程中的作用。通过引入间度中心性和 PageRank 中心性来分析每个区域的重要性。实验结果表明,基于有效连通性的分类方法具有较高的准确性,而且在癫痫发作过程中,大脑不同区域的作用也会发生变化。本研究的相关方法在术前评估和揭示癫痫发作时大脑各相关区域的功能演变模式方面发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信