The emergence of cell-based protein arrays to test for polyspecific off-target binding of antibody therapeutics.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2024-01-01 Epub Date: 2024-08-24 DOI:10.1080/19420862.2024.2393785
Diana M Norden, Carmen T Navia, Jonathan T Sullivan, Benjamin J Doranz
{"title":"The emergence of cell-based protein arrays to test for polyspecific off-target binding of antibody therapeutics.","authors":"Diana M Norden, Carmen T Navia, Jonathan T Sullivan, Benjamin J Doranz","doi":"10.1080/19420862.2024.2393785","DOIUrl":null,"url":null,"abstract":"<p><p>Specificity profiling is a requirement for monoclonal antibodies (mAbs) and antibody-directed biotherapeutics such as CAR-T cells prior to initiating human trials. However, traditional approaches to assess the specificity of mAbs, primarily tissue cross-reactivity studies, have been unreliable, leading to off-target binding going undetected. Here, we review the emergence of cell-based protein arrays as an alternative and improved assessment of mAb specificity. Cell-based protein arrays assess binding across the full human membrane proteome, ~6,000 membrane proteins each individually expressed in their native structural configuration within live or unfixed cells. Our own profiling indicates a surprisingly high off-target rate across the industry, with 33% of lead candidates displaying off-target binding. Moreover, about 20% of therapeutic mAbs in clinical development and currently on the market display off-target binding. Case studies and off-target rates at different phases of biotherapeutic drug approval suggest that off-target binding is likely a major cause of adverse events and drug attrition.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346545/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2024.2393785","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Specificity profiling is a requirement for monoclonal antibodies (mAbs) and antibody-directed biotherapeutics such as CAR-T cells prior to initiating human trials. However, traditional approaches to assess the specificity of mAbs, primarily tissue cross-reactivity studies, have been unreliable, leading to off-target binding going undetected. Here, we review the emergence of cell-based protein arrays as an alternative and improved assessment of mAb specificity. Cell-based protein arrays assess binding across the full human membrane proteome, ~6,000 membrane proteins each individually expressed in their native structural configuration within live or unfixed cells. Our own profiling indicates a surprisingly high off-target rate across the industry, with 33% of lead candidates displaying off-target binding. Moreover, about 20% of therapeutic mAbs in clinical development and currently on the market display off-target binding. Case studies and off-target rates at different phases of biotherapeutic drug approval suggest that off-target binding is likely a major cause of adverse events and drug attrition.

基于细胞的蛋白质阵列用于检测抗体疗法的多特异性脱靶结合。
特异性分析是单克隆抗体(mAbs)和抗体定向生物疗法(如 CAR-T 细胞)在开始人体试验前的一项要求。然而,评估 mAbs 特异性的传统方法(主要是组织交叉反应研究)并不可靠,导致脱靶结合未被发现。在此,我们回顾了基于细胞的蛋白质阵列作为一种替代方法的出现,并对 mAb 特异性评估进行了改进。基于细胞的蛋白质阵列可评估全人类膜蛋白质组的结合情况,约有 6,000 种膜蛋白,每种蛋白都在活细胞或未固定细胞内以其原生结构构型单独表达。我们自己的分析表明,整个行业的脱靶率高得惊人,33% 的先导候选药物显示出脱靶结合。此外,在临床开发和目前上市的治疗用 mAbs 中,约有 20% 显示出脱靶现象。生物治疗药物审批不同阶段的案例研究和脱靶率表明,脱靶结合可能是不良事件和药物损耗的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信