Improving the lesion appearance on FLAIR images synthetized from quantitative MRI: a fast, hybrid approach.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Fei Xu, Stefano Mandija, Jordi P D Kleinloog, Hongyan Liu, Oscar van der Heide, Anja G van der Kolk, Jan Willem Dankbaar, Cornelis A T van den Berg, Alessandro Sbrizzi
{"title":"Improving the lesion appearance on FLAIR images synthetized from quantitative MRI: a fast, hybrid approach.","authors":"Fei Xu, Stefano Mandija, Jordi P D Kleinloog, Hongyan Liu, Oscar van der Heide, Anja G van der Kolk, Jan Willem Dankbaar, Cornelis A T van den Berg, Alessandro Sbrizzi","doi":"10.1007/s10334-024-01198-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The image quality of synthetized FLAIR (fluid attenuated inversion recovery) images is generally inferior to its conventional counterpart, especially regarding the lesion contrast mismatch. This work aimed to improve the lesion appearance through a hybrid methodology.</p><p><strong>Materials and methods: </strong>We combined a full brain 5-min MR-STAT acquisition followed by FLAIR synthetization step with an ultra-under sampled conventional FLAIR sequence and performed the retrospective and prospective analysis of the proposed method on the patient datasets and a healthy volunteer.</p><p><strong>Results: </strong>All performance metrics of the proposed hybrid FLAIR images on patient datasets were significantly higher than those of the physics-based FLAIR images (p < 0.005), and comparable to those of conventional FLAIR images. The small difference between prospective and retrospective analysis on a healthy volunteer demonstrated the validity of the retrospective analysis of the hybrid method as presented for the patient datasets.</p><p><strong>Discussion: </strong>The proposed hybrid FLAIR achieved an improved lesion appearance in the clinical cases with neurological diseases compared to the physics-based FLAIR images, Future prospective work on patient data will address the validation of the method from a diagnostic perspective by radiological inspection of the new images over a larger patient cohort.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"1021-1030"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582199/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-024-01198-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The image quality of synthetized FLAIR (fluid attenuated inversion recovery) images is generally inferior to its conventional counterpart, especially regarding the lesion contrast mismatch. This work aimed to improve the lesion appearance through a hybrid methodology.

Materials and methods: We combined a full brain 5-min MR-STAT acquisition followed by FLAIR synthetization step with an ultra-under sampled conventional FLAIR sequence and performed the retrospective and prospective analysis of the proposed method on the patient datasets and a healthy volunteer.

Results: All performance metrics of the proposed hybrid FLAIR images on patient datasets were significantly higher than those of the physics-based FLAIR images (p < 0.005), and comparable to those of conventional FLAIR images. The small difference between prospective and retrospective analysis on a healthy volunteer demonstrated the validity of the retrospective analysis of the hybrid method as presented for the patient datasets.

Discussion: The proposed hybrid FLAIR achieved an improved lesion appearance in the clinical cases with neurological diseases compared to the physics-based FLAIR images, Future prospective work on patient data will address the validation of the method from a diagnostic perspective by radiological inspection of the new images over a larger patient cohort.

Abstract Image

改善从定量磁共振成像合成的 FLAIR 图像上的病变外观:一种快速的混合方法。
目的:合成 FLAIR(流体衰减反转恢复)图像的图像质量通常不如传统图像,尤其是在病变对比度不匹配方面。这项工作旨在通过一种混合方法改善病灶外观:我们将全脑 5 分钟 MR-STAT 采集后的 FLAIR 合成步骤与超低采样的传统 FLAIR 序列相结合,并在患者数据集和一名健康志愿者身上对所提出的方法进行了回顾性和前瞻性分析:结果:在患者数据集上,所提出的混合 FLAIR 图像的所有性能指标都明显高于基于物理的 FLAIR 图像(p 讨论):与基于物理学的 FLAIR 图像相比,所提出的混合 FLAIR 在神经系统疾病的临床病例中改善了病变的外观,未来在患者数据上的前瞻性工作将通过对更多患者群的新图像进行放射学检查,从诊断角度验证该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
58
审稿时长
>12 weeks
期刊介绍: MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include: advances in materials, hardware and software in magnetic resonance technology, new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine, study of animal models and intact cells using magnetic resonance, reports of clinical trials on humans and clinical validation of magnetic resonance protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信