{"title":"Anti-inflammatory, antiosteoporotic, and bone protective effect of hydroxysafflor yellow A against glucocorticoid-induced osteoporosis in rats","authors":"Jianbo Kuai, Jiachun Zheng, Ankit Kumar, Hongwei Gao","doi":"10.1002/jbt.23797","DOIUrl":null,"url":null,"abstract":"<p>Osteoporosis is a common condition worldwide, affecting millions of people. Women are more commonly affected than men, and the risk increases with age. Inflammatory reaction plays a crucial role in the expansion of osteoporosis. Osteoporosis is characterized by a gradual decline in bone density and bone tissue quality, which increases fragility and raises the risk of fractures. We scrutinized the anti-osteoporosis effect of hydroxysafflor yellow A (HYA) against glucocorticoid-induced osteoporosis (GIOP) in rats. In-silico study was carried out on EGFR receptor (PDBID: 1m17), Estrogen Alpha (PDB id: 2IOG), MTOR (PDB id: 4FA6), RANKL (PDB id: 1S55), and VEGFR2 (PDB id: 1YWN) protein. For this investigation, Sprague-Dawley (SD) rats were used, and they received an oral dose of HYA (5, 10, and 20 mg/kg, b.w.) along with a subcutaneous injection of dexamethasone (0.1 mg/kg/day) to induce osteoporosis. The biomechanical, bone parameters, antioxidant, cytokines, inflammatory, nutrients, hormones, and urine parameters were estimated. HYA treatment significantly suppressed the body weight and altered the organ weight. HYA treatment remarkably suppressed the level of alkaline phosphatase, acid phosphatase, and improved the level of bone mineral density (total, proximal, mild, and dis). HYA treatment restored the level of calcium (Ca), phosphorus (P), estradiol (E<sub>2</sub>), and parathyroid hormone near to the normal level. HYA treatment remarkably altered the level of biomechanical parameters, antioxidant, cytokines, urine, and inflammatory parameters. HYA treatment altered the level of osteoprotegerin (OPG), receptor activator of nuclear factor kappa beta (RANKL) and RANKL/OPG ratio. The result clearly showed the anti-osteoporosis effect of HYA against GIOP-induced osteoporosis in rats via alteration of antioxidant, cytokines, inflammatory, and bone protective parameters.</p>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"38 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.23797","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoporosis is a common condition worldwide, affecting millions of people. Women are more commonly affected than men, and the risk increases with age. Inflammatory reaction plays a crucial role in the expansion of osteoporosis. Osteoporosis is characterized by a gradual decline in bone density and bone tissue quality, which increases fragility and raises the risk of fractures. We scrutinized the anti-osteoporosis effect of hydroxysafflor yellow A (HYA) against glucocorticoid-induced osteoporosis (GIOP) in rats. In-silico study was carried out on EGFR receptor (PDBID: 1m17), Estrogen Alpha (PDB id: 2IOG), MTOR (PDB id: 4FA6), RANKL (PDB id: 1S55), and VEGFR2 (PDB id: 1YWN) protein. For this investigation, Sprague-Dawley (SD) rats were used, and they received an oral dose of HYA (5, 10, and 20 mg/kg, b.w.) along with a subcutaneous injection of dexamethasone (0.1 mg/kg/day) to induce osteoporosis. The biomechanical, bone parameters, antioxidant, cytokines, inflammatory, nutrients, hormones, and urine parameters were estimated. HYA treatment significantly suppressed the body weight and altered the organ weight. HYA treatment remarkably suppressed the level of alkaline phosphatase, acid phosphatase, and improved the level of bone mineral density (total, proximal, mild, and dis). HYA treatment restored the level of calcium (Ca), phosphorus (P), estradiol (E2), and parathyroid hormone near to the normal level. HYA treatment remarkably altered the level of biomechanical parameters, antioxidant, cytokines, urine, and inflammatory parameters. HYA treatment altered the level of osteoprotegerin (OPG), receptor activator of nuclear factor kappa beta (RANKL) and RANKL/OPG ratio. The result clearly showed the anti-osteoporosis effect of HYA against GIOP-induced osteoporosis in rats via alteration of antioxidant, cytokines, inflammatory, and bone protective parameters.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.