Fractional-order heterogeneous neuron network based on coupled locally-active memristors and its application in image encryption and hiding

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
{"title":"Fractional-order heterogeneous neuron network based on coupled locally-active memristors and its application in image encryption and hiding","authors":"","doi":"10.1016/j.chaos.2024.115397","DOIUrl":null,"url":null,"abstract":"<div><p>Synaptic crosstalk significantly influences neural firing in the brain. Locally-active memristors can effectively emulate neural network synapses and have a significant importance in neural network research. This paper designs a tristable locally-active memristive model and presents a novel fractional-order (FO) heterogeneous neuron network. This neural network consists of Hindmarsh-Rose (HR) neuron and FitzHugh-Nagumo (FHN) neuron, which are connected by coupling FO locally-active memristors. The research found that changes in the order of different dimensions have a significant effect on the neural network firing through the three-parameter bifurcation diagram. Moreover, it is found that the locally-active memristor as a synapse can affect the coexistence firing behavior of the network. The complex dynamics have been studied numerically by using phase diagrams, Lyapunov exponent spectrum, bifurcation diagram and extreme multistability can be found. In particular, the system can generate a complex bursting behavior in the presence of an external current. In order to verify the accuracy of the simulation, the phase diagram of FO heterogeneous neuron network is implemented by STM32 microcontroller, and results of the experiments are in great agreement with results of the numerical simulations. Finally, an image encryption and hiding method based on FO heterogeneous neuron network and discrete wavelet transform (DWT) is proposed. The experimental results demonstrate that the encryption and hiding scheme has excellent security and strong robustness.</p></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924009494","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Synaptic crosstalk significantly influences neural firing in the brain. Locally-active memristors can effectively emulate neural network synapses and have a significant importance in neural network research. This paper designs a tristable locally-active memristive model and presents a novel fractional-order (FO) heterogeneous neuron network. This neural network consists of Hindmarsh-Rose (HR) neuron and FitzHugh-Nagumo (FHN) neuron, which are connected by coupling FO locally-active memristors. The research found that changes in the order of different dimensions have a significant effect on the neural network firing through the three-parameter bifurcation diagram. Moreover, it is found that the locally-active memristor as a synapse can affect the coexistence firing behavior of the network. The complex dynamics have been studied numerically by using phase diagrams, Lyapunov exponent spectrum, bifurcation diagram and extreme multistability can be found. In particular, the system can generate a complex bursting behavior in the presence of an external current. In order to verify the accuracy of the simulation, the phase diagram of FO heterogeneous neuron network is implemented by STM32 microcontroller, and results of the experiments are in great agreement with results of the numerical simulations. Finally, an image encryption and hiding method based on FO heterogeneous neuron network and discrete wavelet transform (DWT) is proposed. The experimental results demonstrate that the encryption and hiding scheme has excellent security and strong robustness.

基于耦合局部活性忆阻器的分数阶异构神经元网络及其在图像加密和隐藏中的应用
突触串扰极大地影响着大脑的神经发射。局部活性忆阻器能有效模拟神经网络突触,在神经网络研究中具有重要意义。本文设计了一个三稳态局部活性忆阻器模型,并提出了一个新颖的分数阶(FO)异质神经元网络。该神经网络由 Hindmarsh-Rose (HR)神经元和 FitzHugh-Nagumo (FHN)神经元组成,它们通过耦合 FO 局部主动忆阻器连接。研究发现,通过三参数分岔图,不同维度的顺序变化对神经网络的发射有显著影响。此外,研究还发现作为突触的局部活性忆阻器会影响网络的共存点火行为。利用相图、Lyapunov 指数谱和分岔图对复杂动力学进行了数值研究,并发现了极端多稳定性。特别是,在外部电流的作用下,系统会产生复杂的猝发行为。为了验证模拟的准确性,利用 STM32 微控制器实现了 FO 异构神经元网络的相图,实验结果与数值模拟结果非常吻合。最后,提出了一种基于 FO 异构神经元网络和离散小波变换(DWT)的图像加密和隐藏方法。实验结果表明,该加密和隐藏方案具有出色的安全性和较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信