Optimal control problem governed by a kind of Kirchhoff-type equation

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
{"title":"Optimal control problem governed by a kind of Kirchhoff-type equation","authors":"","doi":"10.1016/j.chaos.2024.115422","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider an optimal control problem governed by a kind of Kirchhoff-type equation, which plays an important role in the phenomenon of beam vibration. Firstly, the existence of solution to the state equation is proved by the variational method. Secondly, for the given cost functional, we get that there exists at least an optimal state-control pair via the Sobolev’s embedding theorem under the constraint of the state equation. Next, the necessary optimality condition for the optimal solution is derived by using the cone method. Finally, we give the pointwise variational inequality, minimum principles and an equivalent necessary condition for the optimal control problem according to the discussion of the variational inequality.</p></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924009743","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider an optimal control problem governed by a kind of Kirchhoff-type equation, which plays an important role in the phenomenon of beam vibration. Firstly, the existence of solution to the state equation is proved by the variational method. Secondly, for the given cost functional, we get that there exists at least an optimal state-control pair via the Sobolev’s embedding theorem under the constraint of the state equation. Next, the necessary optimality condition for the optimal solution is derived by using the cone method. Finally, we give the pointwise variational inequality, minimum principles and an equivalent necessary condition for the optimal control problem according to the discussion of the variational inequality.

受一种基尔霍夫方程支配的优化控制问题
本文考虑了一种基尔霍夫型方程所控制的最优控制问题,该方程在梁振动现象中起着重要作用。首先,通过变分法证明了状态方程解的存在性。其次,对于给定的成本函数,在状态方程的约束下,通过索波列夫嵌入定理,我们得到至少存在一个最优的状态控制对。接着,我们利用圆锥法推导出最优解的必要最优条件。最后,根据变分不等式的讨论,我们给出了最优控制问题的点变不等式、最小原则和等效必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信