{"title":"Methylation and transcriptomic profiling reveals short term and long term regulatory responses in polarized macrophages","authors":"","doi":"10.1016/j.csbj.2024.08.018","DOIUrl":null,"url":null,"abstract":"<div><p>Macrophage plasticity allows the adoption of distinct functional states in response to environmental cues. While unique transcriptomic profiles define these states, focusing solely on transcription neglects potential long-term effects. The investigation of epigenetic changes can be used to understand how temporary stimuli can result in lasting effects. Epigenetic alterations play an important role in the pathophysiology of macrophages, including their trained innate immunity, enabling faster and more efficient inflammatory responses upon subsequent encounters to the same pathogen or insult. In this study, we used a multi-omics approach to elucidate the interplay between gene expression and DNA-methylation, to explore the potential long-term effects of diverse polarizing environments on macrophage activity. We identified a common core set of genes that are differentially methylated regardless of exposure type, indicating a potential common fundamental mechanism for adaptation to various stimuli. Functional analysis revealed that processes requiring rapid responses displayed transcriptomic regulation, whereas functions critical for long-term adaptations exhibited co-regulation at both transcriptomic and epigenetic levels. Our study uncovers a novel set of genes linked to the long-term effects of macrophage polarization. This discovery underscores the potential of epigenetics in elucidating how macrophages establish long-term memory and influence health outcomes.</p></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2001037024002769/pdfft?md5=e2b76882a78145c414f3236fa1d52b03&pid=1-s2.0-S2001037024002769-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037024002769","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Macrophage plasticity allows the adoption of distinct functional states in response to environmental cues. While unique transcriptomic profiles define these states, focusing solely on transcription neglects potential long-term effects. The investigation of epigenetic changes can be used to understand how temporary stimuli can result in lasting effects. Epigenetic alterations play an important role in the pathophysiology of macrophages, including their trained innate immunity, enabling faster and more efficient inflammatory responses upon subsequent encounters to the same pathogen or insult. In this study, we used a multi-omics approach to elucidate the interplay between gene expression and DNA-methylation, to explore the potential long-term effects of diverse polarizing environments on macrophage activity. We identified a common core set of genes that are differentially methylated regardless of exposure type, indicating a potential common fundamental mechanism for adaptation to various stimuli. Functional analysis revealed that processes requiring rapid responses displayed transcriptomic regulation, whereas functions critical for long-term adaptations exhibited co-regulation at both transcriptomic and epigenetic levels. Our study uncovers a novel set of genes linked to the long-term effects of macrophage polarization. This discovery underscores the potential of epigenetics in elucidating how macrophages establish long-term memory and influence health outcomes.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology