{"title":"Vascular endothelial dysfunction improvements in patients with uraemia using pentoxifylline-suppressing NLRP3 expressions and HMGB1 release.","authors":"Ruikun Li, Xue Zhang, Yuanqin Xu, Tao Feng","doi":"10.1097/SHK.0000000000002429","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>This study aimed to investigate the protective effect of pentoxifylline (PTX) on vascular endothelial dysfunction in uraemia. The human aortic endothelial cells (HAECs) required for the experiments were all obtained from the National Collection of Authenticated Cell Cultures (Salisbury, UK). The permeability of HAECs was assessed. Each group had six samples. Compared with the healthy volunteer group, HAEC proliferation in the 20% uraemia group was significantly inhibited after 72 h (p < 0.001), co-localisation of nucleotide-binding domain, leucine-rich repeat-containing receptor family pyrin domain-containing 3 (NLRP3) and apoptosis-associated speck-like (ASC) protein induced by uremic serum was enhanced (p < 0.01) and high mobility group box 1 (HMGB1) release was increased (0.594 ± 0.057, p = 0.03). The co-immunoprecipitation of NLRP3, ASC and HMGB1 induced by uremic toxin was also enhanced (p < 0.01), and PTX inhibited this phenomenon. The expression of NLRP3 (0.810 ± 0.032, p = 0.02) and caspase-1 (0.580 ± 0.041, p = 0.03) was increased, whereas the expression of ZO-1 (0.255 ± 0.038, p = 0.03) and VE-cadherin (0.0546 ± 0.053, p = 0.02) was decreased in the uraemia group; compared with the healthy volunteer group, treated with PTX (NLRP3, 0.298 ± 0.042, p = 0.03; caspase-1, 0.310 ± 0.021, p = 0.03; ZO-1, 0.412 ± 0.028, p = 0.02; VE-cadherin, 0.150 ± 0.034, p = 0.02) and MCC950 (NLRP3, 0.432 ± 0.022, p = 0.03; caspase-1, 0.067 ± 0.031, p > 0.05; ZO-1, 0.457 ± 0.026, p = 0.03; VE-cadherin, 0.286 ± 0.017, p = 0.03) lessened this trend. Pentoxifylline promoted the HAEC permeability mediated by uremic toxins (1.507 ± 0.012, p = 0.02). In conclusion, PTX enhances the release of HMGB1, which is dependent on NLRP3 activation, and consequently exerts positive effects on interconnecting proteins, ultimately leading to an improvement in vascular permeability.</p>","PeriodicalId":21667,"journal":{"name":"SHOCK","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SHOCK","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/SHK.0000000000002429","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: This study aimed to investigate the protective effect of pentoxifylline (PTX) on vascular endothelial dysfunction in uraemia. The human aortic endothelial cells (HAECs) required for the experiments were all obtained from the National Collection of Authenticated Cell Cultures (Salisbury, UK). The permeability of HAECs was assessed. Each group had six samples. Compared with the healthy volunteer group, HAEC proliferation in the 20% uraemia group was significantly inhibited after 72 h (p < 0.001), co-localisation of nucleotide-binding domain, leucine-rich repeat-containing receptor family pyrin domain-containing 3 (NLRP3) and apoptosis-associated speck-like (ASC) protein induced by uremic serum was enhanced (p < 0.01) and high mobility group box 1 (HMGB1) release was increased (0.594 ± 0.057, p = 0.03). The co-immunoprecipitation of NLRP3, ASC and HMGB1 induced by uremic toxin was also enhanced (p < 0.01), and PTX inhibited this phenomenon. The expression of NLRP3 (0.810 ± 0.032, p = 0.02) and caspase-1 (0.580 ± 0.041, p = 0.03) was increased, whereas the expression of ZO-1 (0.255 ± 0.038, p = 0.03) and VE-cadherin (0.0546 ± 0.053, p = 0.02) was decreased in the uraemia group; compared with the healthy volunteer group, treated with PTX (NLRP3, 0.298 ± 0.042, p = 0.03; caspase-1, 0.310 ± 0.021, p = 0.03; ZO-1, 0.412 ± 0.028, p = 0.02; VE-cadherin, 0.150 ± 0.034, p = 0.02) and MCC950 (NLRP3, 0.432 ± 0.022, p = 0.03; caspase-1, 0.067 ± 0.031, p > 0.05; ZO-1, 0.457 ± 0.026, p = 0.03; VE-cadherin, 0.286 ± 0.017, p = 0.03) lessened this trend. Pentoxifylline promoted the HAEC permeability mediated by uremic toxins (1.507 ± 0.012, p = 0.02). In conclusion, PTX enhances the release of HMGB1, which is dependent on NLRP3 activation, and consequently exerts positive effects on interconnecting proteins, ultimately leading to an improvement in vascular permeability.
期刊介绍:
SHOCK®: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches includes studies of novel therapeutic approaches, such as immunomodulation, gene therapy, nutrition, and others. The mission of the Journal is to foster and promote multidisciplinary studies, both experimental and clinical in nature, that critically examine the etiology, mechanisms and novel therapeutics of shock-related pathophysiological conditions. Its purpose is to excel as a vehicle for timely publication in the areas of basic and clinical studies of shock, trauma, sepsis, inflammation, ischemia, and related pathobiological states, with particular emphasis on the biologic mechanisms that determine the response to such injury. Making such information available will ultimately facilitate improved care of the traumatized or septic individual.