Khatereh Shabanian , Taraneh Shabanian , Gergely Karsai , Luca Pontiggia , Francesco Paneni , Frank Ruschitzka , Jürg H. Beer , Seyed Soheil Saeedi Saravi
{"title":"AQP1 differentially orchestrates endothelial cell senescence","authors":"Khatereh Shabanian , Taraneh Shabanian , Gergely Karsai , Luca Pontiggia , Francesco Paneni , Frank Ruschitzka , Jürg H. Beer , Seyed Soheil Saeedi Saravi","doi":"10.1016/j.redox.2024.103317","DOIUrl":null,"url":null,"abstract":"<div><p>Accumulation of senescent endothelial cells (ECs) with age is a pivotal driver of cardiovascular diseases in aging. However, little is known about the mechanisms and signaling pathways that regulate EC senescence. In this report, we delineate a previously unrecognized role of aquaporin 1 (AQP1) in orchestrating extracellular hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-induced cellular senescence in aortic ECs. Our findings underscore AQP1's differential impact on senescence hallmarks, including cell-cycle arrest, senescence-associated secretory phenotype (SASP), and DNA damage responses, intricately regulating angiogenesis. In proliferating ECs, AQP1 is crucial for maintaining angiogenic capacity, whereas disruption of AQP1 induces morphological and mitochondrial alterations, culminating in senescence and impaired angiogenesis. Conversely, <em>Aqp1</em> knockdown or selective blockade of AQP1 in senescent ECs rescues the excess H<sub>2</sub>O<sub>2</sub>-induced cellular senescence phenotype and metabolic dysfunction, thereby ameliorating intrinsic angiogenic incompetence. Mechanistically, AQP1 facilitates H<sub>2</sub>O<sub>2</sub> transmembrane transport, exacerbating oxidant-sensitive kinases CaMKII-AMPK. This process suppresses HDAC4 translocation, consequently de-repressing Mef2A-eNOS signaling in proliferating ECs. However, in senescent ECs, AQP1 overexpression is linked to preserved HDAC4-Mef2A complex and downregulation of eNOS signaling. Together, our studies identify AQP1 as a novel epigenetic regulator of HDAC4-Mef2A-dependent EC senescence and angiogenic potential, highlighting its potential as a therapeutic target for antagonizing age-related cardiovascular diseases.</p></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"76 ","pages":"Article 103317"},"PeriodicalIF":10.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213231724002957/pdfft?md5=77c7b2e53d726b0855734a03b30e8e4d&pid=1-s2.0-S2213231724002957-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231724002957","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accumulation of senescent endothelial cells (ECs) with age is a pivotal driver of cardiovascular diseases in aging. However, little is known about the mechanisms and signaling pathways that regulate EC senescence. In this report, we delineate a previously unrecognized role of aquaporin 1 (AQP1) in orchestrating extracellular hydrogen peroxide (H2O2)-induced cellular senescence in aortic ECs. Our findings underscore AQP1's differential impact on senescence hallmarks, including cell-cycle arrest, senescence-associated secretory phenotype (SASP), and DNA damage responses, intricately regulating angiogenesis. In proliferating ECs, AQP1 is crucial for maintaining angiogenic capacity, whereas disruption of AQP1 induces morphological and mitochondrial alterations, culminating in senescence and impaired angiogenesis. Conversely, Aqp1 knockdown or selective blockade of AQP1 in senescent ECs rescues the excess H2O2-induced cellular senescence phenotype and metabolic dysfunction, thereby ameliorating intrinsic angiogenic incompetence. Mechanistically, AQP1 facilitates H2O2 transmembrane transport, exacerbating oxidant-sensitive kinases CaMKII-AMPK. This process suppresses HDAC4 translocation, consequently de-repressing Mef2A-eNOS signaling in proliferating ECs. However, in senescent ECs, AQP1 overexpression is linked to preserved HDAC4-Mef2A complex and downregulation of eNOS signaling. Together, our studies identify AQP1 as a novel epigenetic regulator of HDAC4-Mef2A-dependent EC senescence and angiogenic potential, highlighting its potential as a therapeutic target for antagonizing age-related cardiovascular diseases.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.