S. Venkatesan, M. Kempanna, J. Nagaraja, A. Bhuvanesh
{"title":"A Novel Classification Approach for Retinal Disease Using Improved Gannet Optimization-Based Capsule DenseNet","authors":"S. Venkatesan, M. Kempanna, J. Nagaraja, A. Bhuvanesh","doi":"10.1002/ima.23156","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>An unusual condition of the eye called diabetic retinopathy affects the human retina and is brought on by the blood's constant rise in insulin levels. Loss of vision is the result. Diabetic retinopathy can be improved by receiving an early diagnosis to prevent further damage. A cost-effective method of accumulating medical treatments is through appropriate DR screening. In this work, deep learning framework is introduced for the accurate classification of retinal diseases. The proposed method processes retinal fundus images obtained from databases, addressing noise and artifacts through an improved median filter (ImMF). It leverages the UNet++ model for precise segmentation of the disease-affected regions. UNet++ enhances feature extraction through cross-stage connections, improving segmentation results. The segmented images are then fed as input to the improved gannet optimization-based capsule DenseNet (IG-CDNet) for retinal disease classification. The hybrid capsule DenseNet (CDNet) classifies disease and is optimized using the improved gannet optimization algorithm to boost classification accuracy. Finally, the accuracy and dice score values achieved are 0.9917 and 0.9652 on the APTOS-2019 dataset.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23156","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
An unusual condition of the eye called diabetic retinopathy affects the human retina and is brought on by the blood's constant rise in insulin levels. Loss of vision is the result. Diabetic retinopathy can be improved by receiving an early diagnosis to prevent further damage. A cost-effective method of accumulating medical treatments is through appropriate DR screening. In this work, deep learning framework is introduced for the accurate classification of retinal diseases. The proposed method processes retinal fundus images obtained from databases, addressing noise and artifacts through an improved median filter (ImMF). It leverages the UNet++ model for precise segmentation of the disease-affected regions. UNet++ enhances feature extraction through cross-stage connections, improving segmentation results. The segmented images are then fed as input to the improved gannet optimization-based capsule DenseNet (IG-CDNet) for retinal disease classification. The hybrid capsule DenseNet (CDNet) classifies disease and is optimized using the improved gannet optimization algorithm to boost classification accuracy. Finally, the accuracy and dice score values achieved are 0.9917 and 0.9652 on the APTOS-2019 dataset.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.