{"title":"Deep learning of multimodal networks with topological regularization for drug repositioning","authors":"Yuto Ohnuki, Manato Akiyama, Yasubumi Sakakibara","doi":"10.1186/s13321-024-00897-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Motivation</h3><p>Computational techniques for drug-disease prediction are essential in enhancing drug discovery and repositioning. While many methods utilize multimodal networks from various biological databases, few integrate comprehensive multi-omics data, including transcriptomes, proteomes, and metabolomes. We introduce STRGNN, a novel graph deep learning approach that predicts drug-disease relationships using extensive multimodal networks comprising proteins, RNAs, metabolites, and compounds. We have constructed a detailed dataset incorporating multi-omics data and developed a learning algorithm with topological regularization. This algorithm selectively leverages informative modalities while filtering out redundancies.</p><h3>Results</h3><p>STRGNN demonstrates superior accuracy compared to existing methods and has identified several novel drug effects, corroborating existing literature. STRGNN emerges as a powerful tool for drug prediction and discovery. The source code for STRGNN, along with the dataset for performance evaluation, is available at https://github.com/yuto-ohnuki/STRGNN.git.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00897-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00897-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation
Computational techniques for drug-disease prediction are essential in enhancing drug discovery and repositioning. While many methods utilize multimodal networks from various biological databases, few integrate comprehensive multi-omics data, including transcriptomes, proteomes, and metabolomes. We introduce STRGNN, a novel graph deep learning approach that predicts drug-disease relationships using extensive multimodal networks comprising proteins, RNAs, metabolites, and compounds. We have constructed a detailed dataset incorporating multi-omics data and developed a learning algorithm with topological regularization. This algorithm selectively leverages informative modalities while filtering out redundancies.
Results
STRGNN demonstrates superior accuracy compared to existing methods and has identified several novel drug effects, corroborating existing literature. STRGNN emerges as a powerful tool for drug prediction and discovery. The source code for STRGNN, along with the dataset for performance evaluation, is available at https://github.com/yuto-ohnuki/STRGNN.git.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.