{"title":"Unveiling the thermodynamic landscape of liquid Ti–Al–Ni alloys through first-principles simulations","authors":"Jiayin Li , Xinxin Li , Jin Wang , Jingyu Qin","doi":"10.1016/j.calphad.2024.102727","DOIUrl":null,"url":null,"abstract":"<div><p>We conducted <em>ab initio</em> molecular dynamics simulations to systematically examine the composition-dependent thermodynamic properties and atomic-scale interactions in liquid Ti–Al–Ni alloys throughout the entire ternary phase space at 2033 K. The calculated enthalpies of mixing demonstrated exothermic tendencies, with a distinct minimum in the composition of Ti<sub>0.0</sub>Al<sub>0.50</sub>Ni<sub>0.50</sub>, indicating significant Al–Ni attractive interactions. Incorporating ternary interaction parameters into the Redlich-Kister-Muggianu equation enabled accurate modeling of the complex variations in mixing enthalpy. Analysis of partial pair correlation functions and structure factors revealed chemical and topological short-range ordering (SRO), as well as medium-range ordering, within the liquid alloy. Quantifying deviations from ideal configurational entropy clarifies the coupling between chemical SRO and topological SRO, significantly impacting the overall Gibbs energy of mixing. This comprehensive atomistic study provides insights into the thermodynamics of Ti–Al–Ni alloys, paving the way for tailoring their properties for high-performance applications.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"86 ","pages":"Article 102727"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591624000695","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We conducted ab initio molecular dynamics simulations to systematically examine the composition-dependent thermodynamic properties and atomic-scale interactions in liquid Ti–Al–Ni alloys throughout the entire ternary phase space at 2033 K. The calculated enthalpies of mixing demonstrated exothermic tendencies, with a distinct minimum in the composition of Ti0.0Al0.50Ni0.50, indicating significant Al–Ni attractive interactions. Incorporating ternary interaction parameters into the Redlich-Kister-Muggianu equation enabled accurate modeling of the complex variations in mixing enthalpy. Analysis of partial pair correlation functions and structure factors revealed chemical and topological short-range ordering (SRO), as well as medium-range ordering, within the liquid alloy. Quantifying deviations from ideal configurational entropy clarifies the coupling between chemical SRO and topological SRO, significantly impacting the overall Gibbs energy of mixing. This comprehensive atomistic study provides insights into the thermodynamics of Ti–Al–Ni alloys, paving the way for tailoring their properties for high-performance applications.
期刊介绍:
The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.