{"title":"Blended insurance scheme: A synergistic conventional-index insurance mixture","authors":"Jinggong Zhang","doi":"10.1016/j.insmatheco.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional indemnity-based insurance (“conventional insurance”) and index-based insurance (“index insurance”) represent two primary insurance types, each harboring distinct advantages depending on specific circumstances. This paper proposes a novel blended insurance whose payout is a mixture of the two, to achieve enhanced risk mitigation and cost efficiency. We present the product design framework that employs a multi-output neural network (NN) model to determine both the triggering type and the index-based payout level. The proposed framework is then applied to an empirical case involving soybean production coverage in Iowa. Our results demonstrate this blended insurance could generally outperform both conventional and index insurance in enhancing policyholders' utility.</p></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"119 ","pages":"Pages 93-105"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668724000921","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional indemnity-based insurance (“conventional insurance”) and index-based insurance (“index insurance”) represent two primary insurance types, each harboring distinct advantages depending on specific circumstances. This paper proposes a novel blended insurance whose payout is a mixture of the two, to achieve enhanced risk mitigation and cost efficiency. We present the product design framework that employs a multi-output neural network (NN) model to determine both the triggering type and the index-based payout level. The proposed framework is then applied to an empirical case involving soybean production coverage in Iowa. Our results demonstrate this blended insurance could generally outperform both conventional and index insurance in enhancing policyholders' utility.
期刊介绍:
Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world.
Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.