A two-stage accelerated search strategy for large-scale multi-objective evolutionary algorithm

IF 8.1 1区 计算机科学 N/A COMPUTER SCIENCE, INFORMATION SYSTEMS
{"title":"A two-stage accelerated search strategy for large-scale multi-objective evolutionary algorithm","authors":"","doi":"10.1016/j.ins.2024.121347","DOIUrl":null,"url":null,"abstract":"<div><p>Since large-scale multi-objective problems (LSMOPs) have huge decision variables, the traditional evolutionary algorithms are facing difficulties of low exploitation efficiency and high exploration costs in solving LSMOPs. Therefore, this paper proposes an evolutionary strategy based on two-stage accelerated search optimizers (ATAES). Specifically, a convergence optimizer is devised in the first stage, while a three-layer lightweight convolutional neural network model is built, and the population is homogenized into two subsets, the diversity subset, and the convergence subset, which serve as input nodes and the expected output nodes of the neural network, respectively. Then, by constantly backpropagating the gradient, a satisfactory individual will be produced. Once exploitation stagnation is discovered in the first phase, the second phase will be run, where a diversity optimizer using a differential optimization algorithm with opposite learning is suggested to increase the exploration range of candidate solutions and thereby increase the population's diversity. Finally, to validate the algorithm's performance, on multi-objective LSMOP and DTLZ benchmark suits with decision variable quantities of 100, 300, 500, and 1000, the ATAES demonstrated its superiority with other advanced multi-objective evolutionary algorithms.</p></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524012611","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"N/A","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Since large-scale multi-objective problems (LSMOPs) have huge decision variables, the traditional evolutionary algorithms are facing difficulties of low exploitation efficiency and high exploration costs in solving LSMOPs. Therefore, this paper proposes an evolutionary strategy based on two-stage accelerated search optimizers (ATAES). Specifically, a convergence optimizer is devised in the first stage, while a three-layer lightweight convolutional neural network model is built, and the population is homogenized into two subsets, the diversity subset, and the convergence subset, which serve as input nodes and the expected output nodes of the neural network, respectively. Then, by constantly backpropagating the gradient, a satisfactory individual will be produced. Once exploitation stagnation is discovered in the first phase, the second phase will be run, where a diversity optimizer using a differential optimization algorithm with opposite learning is suggested to increase the exploration range of candidate solutions and thereby increase the population's diversity. Finally, to validate the algorithm's performance, on multi-objective LSMOP and DTLZ benchmark suits with decision variable quantities of 100, 300, 500, and 1000, the ATAES demonstrated its superiority with other advanced multi-objective evolutionary algorithms.

大规模多目标进化算法的两阶段加速搜索策略
由于大规模多目标问题(LSMOPs)具有巨大的决策变量,传统的进化算法在求解 LSMOPs 时面临着利用效率低、探索成本高的难题。因此,本文提出了一种基于两阶段加速搜索优化器(ATAES)的进化策略。具体来说,第一阶段设计了一个收敛优化器,同时建立了一个三层轻量级卷积神经网络模型,并将种群均质化为两个子集,即多样性子集和收敛子集,分别作为神经网络的输入节点和预期输出节点。然后,通过不断反向传播梯度,就会产生一个令人满意的个体。一旦在第一阶段发现开发停滞,就会运行第二阶段,在第二阶段,建议使用具有相反学习的差分优化算法的多样性优化器来增加候选解的探索范围,从而增加种群的多样性。最后,为了验证该算法的性能,在决策变量数量为 100、300、500 和 1000 的多目标 LSMOP 和 DTLZ 基准套件上,ATAES 展示了其优于其他先进多目标进化算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信