{"title":"Understanding the natural language of DNA using encoder-decoder foundation models with byte-level precision.","authors":"Aditya Malusare, Harish Kothandaraman, Dipesh Tamboli, Nadia A Lanman, Vaneet Aggarwal","doi":"10.1093/bioadv/vbae117","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>This article presents the Ensemble Nucleotide Byte-level Encoder-Decoder (ENBED) foundation model, analyzing DNA sequences at byte-level precision with an encoder-decoder Transformer architecture. ENBED uses a subquadratic implementation of attention to develop an efficient model capable of sequence-to-sequence transformations, generalizing previous genomic models with encoder-only or decoder-only architectures. We use Masked Language Modeling to pretrain the foundation model using reference genome sequences and apply it in the following downstream tasks: (i) identification of enhancers, promotors, and splice sites, (ii) recognition of sequences containing base call mismatches and insertion/deletion errors, an advantage over tokenization schemes involving multiple base pairs, which lose the ability to analyze with byte-level precision, (iii) identification of biological function annotations of genomic sequences, and (iv) generating mutations of the Influenza virus using the encoder-decoder architecture and validating them against real-world observations. In each of these tasks, we demonstrate significant improvement as compared to the existing state-of-the-art results.</p><p><strong>Availability and implementation: </strong>The source code used to develop and fine-tune the foundation model has been released on Github (https://github.itap.purdue.edu/Clan-labs/ENBED).</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341122/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Summary: This article presents the Ensemble Nucleotide Byte-level Encoder-Decoder (ENBED) foundation model, analyzing DNA sequences at byte-level precision with an encoder-decoder Transformer architecture. ENBED uses a subquadratic implementation of attention to develop an efficient model capable of sequence-to-sequence transformations, generalizing previous genomic models with encoder-only or decoder-only architectures. We use Masked Language Modeling to pretrain the foundation model using reference genome sequences and apply it in the following downstream tasks: (i) identification of enhancers, promotors, and splice sites, (ii) recognition of sequences containing base call mismatches and insertion/deletion errors, an advantage over tokenization schemes involving multiple base pairs, which lose the ability to analyze with byte-level precision, (iii) identification of biological function annotations of genomic sequences, and (iv) generating mutations of the Influenza virus using the encoder-decoder architecture and validating them against real-world observations. In each of these tasks, we demonstrate significant improvement as compared to the existing state-of-the-art results.
Availability and implementation: The source code used to develop and fine-tune the foundation model has been released on Github (https://github.itap.purdue.edu/Clan-labs/ENBED).