Robust AMD Stage Grading with Exclusively OCTA Modality Leveraging 3D Volume.

Haochen Zhang, Anna Heinke, Carlo Miguel B Galang, Daniel N Deussen, Bo Wen, Dirk-Uwe G Bartsch, William R Freeman, Truong Q Nguyen, Cheolhong An
{"title":"Robust AMD Stage Grading with Exclusively OCTA Modality Leveraging 3D Volume.","authors":"Haochen Zhang, Anna Heinke, Carlo Miguel B Galang, Daniel N Deussen, Bo Wen, Dirk-Uwe G Bartsch, William R Freeman, Truong Q Nguyen, Cheolhong An","doi":"10.1109/ICCVW60793.2023.00255","DOIUrl":null,"url":null,"abstract":"<p><p>Age-related Macular Degeneration (AMD) is a degenerative eye disease that causes central vision loss. Optical Coherence Tomography Angiography (OCTA) is an emerging imaging modality that aids in the diagnosis of AMD by displaying the pathogenic vessels in the subretinal space. In this paper, we investigate the effectiveness of OCTA from the view of deep classifiers. To the best of our knowledge, this is the first study that solely uses OCTA for AMD stage grading. By developing a 2D classifier based on OCTA projections, we identify that segmentation errors in retinal layers significantly affect the accuracy of classification. To address this issue, we propose analyzing 3D OCTA volumes directly using a 2D convolutional neural network trained with additional projection supervision. Our experimental results show that we achieve over 80% accuracy on a four-stage grading task on both error-free and error-prone test sets, which is significantly higher than 60%, the accuracy of human experts. This demonstrates that OCTA provides sufficient information for AMD stage grading and the proposed 3D volume analyzer is more robust when dealing with OCTA data with segmentation errors.</p>","PeriodicalId":72022,"journal":{"name":"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision","volume":"2023 ","pages":"2403-2412"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340655/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW60793.2023.00255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Age-related Macular Degeneration (AMD) is a degenerative eye disease that causes central vision loss. Optical Coherence Tomography Angiography (OCTA) is an emerging imaging modality that aids in the diagnosis of AMD by displaying the pathogenic vessels in the subretinal space. In this paper, we investigate the effectiveness of OCTA from the view of deep classifiers. To the best of our knowledge, this is the first study that solely uses OCTA for AMD stage grading. By developing a 2D classifier based on OCTA projections, we identify that segmentation errors in retinal layers significantly affect the accuracy of classification. To address this issue, we propose analyzing 3D OCTA volumes directly using a 2D convolutional neural network trained with additional projection supervision. Our experimental results show that we achieve over 80% accuracy on a four-stage grading task on both error-free and error-prone test sets, which is significantly higher than 60%, the accuracy of human experts. This demonstrates that OCTA provides sufficient information for AMD stage grading and the proposed 3D volume analyzer is more robust when dealing with OCTA data with segmentation errors.

利用三维容积的 OCTA 独家模式进行可靠的老年黄斑病变分期。
老年性黄斑变性(AMD)是一种导致中心视力丧失的退行性眼病。光学相干断层扫描血管造影术(OCTA)是一种新兴的成像模式,它通过显示视网膜下空间的致病血管来帮助诊断老年性黄斑变性。在本文中,我们从深度分类器的角度研究了 OCTA 的有效性。据我们所知,这是第一项完全使用 OCTA 进行 AMD 分期分级的研究。通过开发基于 OCTA 投影的二维分类器,我们发现视网膜层的分割误差会严重影响分类的准确性。为了解决这个问题,我们建议直接使用经过额外投影监督训练的二维卷积神经网络来分析三维 OCTA 卷。实验结果表明,我们在无差错和易出错测试集的四级分级任务中取得了 80% 以上的准确率,明显高于人类专家 60% 的准确率。这表明,OCTA 为 AMD 阶段分级提供了足够的信息,而且在处理有分割误差的 OCTA 数据时,所提出的三维容积分析仪更加稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信