Ali Tehrani-Saleh;J. Devin McAuley;Christoph Adami
{"title":"Mechanism of Duration Perception in Artificial Brains Suggests New Model of Attentional Entrainment","authors":"Ali Tehrani-Saleh;J. Devin McAuley;Christoph Adami","doi":"10.1162/neco_a_01699","DOIUrl":null,"url":null,"abstract":"While cognitive theory has advanced several candidate frameworks to explain attentional entrainment, the neural basis for the temporal allocation of attention is unknown. Here we present a new model of attentional entrainment guided by empirical evidence obtained using a cohort of 50 artificial brains. These brains were evolved in silico to perform a duration judgment task similar to one where human subjects perform duration judgments in auditory oddball paradigms. We found that the artificial brains display psychometric characteristics remarkably similar to those of human listeners and exhibit similar patterns of distortions of perception when presented with out-of-rhythm oddballs. A detailed analysis of mechanisms behind the duration distortion suggests that attention peaks at the end of the tone, which is inconsistent with previous attentional entrainment models. Instead, the new model of entrainment emphasizes increased attention to those aspects of the stimulus that the brain expects to be highly informative.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"36 10","pages":"2170-2200"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10713871/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
While cognitive theory has advanced several candidate frameworks to explain attentional entrainment, the neural basis for the temporal allocation of attention is unknown. Here we present a new model of attentional entrainment guided by empirical evidence obtained using a cohort of 50 artificial brains. These brains were evolved in silico to perform a duration judgment task similar to one where human subjects perform duration judgments in auditory oddball paradigms. We found that the artificial brains display psychometric characteristics remarkably similar to those of human listeners and exhibit similar patterns of distortions of perception when presented with out-of-rhythm oddballs. A detailed analysis of mechanisms behind the duration distortion suggests that attention peaks at the end of the tone, which is inconsistent with previous attentional entrainment models. Instead, the new model of entrainment emphasizes increased attention to those aspects of the stimulus that the brain expects to be highly informative.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.