{"title":"Why does a cell function? New arguments in favor of quantum effects","authors":"A.V. Melkikh","doi":"10.1016/j.biosystems.2024.105311","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the complexities of intracellular processes have been analyzed, including DNA folding, alternative splicing, mitochondrial function, and enzyme transport in lysosomes. Based on a previously proposed hypothesis (Levinthal's generalized paradox), a conclusion is made that all abovementioned processes cannot be realized with sufficient accuracy and in a realistic timeframe within the framework of classical physics. It is unclear why the cell functions at all. For the cell to function, its internal environment must be highly structured. In this regard, the cell shares similarities with computational devices (computers). In this study, quantum models of interactions between biologically important molecules were constructed, taking into account the long-range effects. One significant aspect of these models is the special role of the phase of the wavefunction, which serves as a controlling parameter. Experiments have been proposed that may confirm or refute these models.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724001965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the complexities of intracellular processes have been analyzed, including DNA folding, alternative splicing, mitochondrial function, and enzyme transport in lysosomes. Based on a previously proposed hypothesis (Levinthal's generalized paradox), a conclusion is made that all abovementioned processes cannot be realized with sufficient accuracy and in a realistic timeframe within the framework of classical physics. It is unclear why the cell functions at all. For the cell to function, its internal environment must be highly structured. In this regard, the cell shares similarities with computational devices (computers). In this study, quantum models of interactions between biologically important molecules were constructed, taking into account the long-range effects. One significant aspect of these models is the special role of the phase of the wavefunction, which serves as a controlling parameter. Experiments have been proposed that may confirm or refute these models.
本研究分析了细胞内过程的复杂性,包括 DNA 折叠、替代剪接、线粒体功能和溶酶体中的酶运输。根据之前提出的一个假设(莱文塔尔广义悖论),得出的结论是,在经典物理学框架内,上述所有过程都无法在现实的时间范围内以足够的精度实现。目前尚不清楚细胞为何能发挥作用。细胞要发挥作用,其内部环境必须高度结构化。在这方面,细胞与计算设备(计算机)有相似之处。在这项研究中,我们构建了生物重要分子之间相互作用的量子模型,其中考虑到了长程效应。这些模型的一个重要方面是波函数相位的特殊作用,它是一个控制参数。已提出的实验可以证实或反驳这些模型。