{"title":"Phylogenetic Biogeography Inference Using Dynamic Paleogeography Models and Explicit Geographic Ranges.","authors":"J Salvador Arias","doi":"10.1093/sysbio/syae051","DOIUrl":null,"url":null,"abstract":"<p><p>To model distribution ranges, the most popular methods of phylogenetic biogeography divide Earth into a handful of predefined areas. Other methods use explicit geographic ranges, but unfortunately, these methods assume a static Earth, ignoring the effects of plate tectonics and the changes in the landscape. To address this limitation, I propose a method that uses explicit geographic ranges and incorporates a plate motion model and a paleolandscape model directly derived from the models used by geologists in their tectonic and paleogeographic reconstructions. The underlying geographic model is a high-resolution pixelation of a spherical Earth. Biogeographic inference is based on diffusion, approximates the effects of the landscape, uses a time-stratified model to take into account the geographic changes, and directly integrates over all probable histories. By using a simplified stochastic mapping algorithm, it is possible to infer the ancestral locations as well as the distance traveled by the ancestral lineages. For illustration, I applied the method to an empirical phylogeny of the Sapindaceae plants. This example shows that methods based on explicit geographic data, coupled with high-resolution paleogeographic models, can provide detailed reconstructions of the ancestral areas but also include inferences about the probable dispersal paths and diffusion speed across the taxon history. The method is implemented in the program PhyGeo.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"995-1014"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/sysbio/syae051","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To model distribution ranges, the most popular methods of phylogenetic biogeography divide Earth into a handful of predefined areas. Other methods use explicit geographic ranges, but unfortunately, these methods assume a static Earth, ignoring the effects of plate tectonics and the changes in the landscape. To address this limitation, I propose a method that uses explicit geographic ranges and incorporates a plate motion model and a paleolandscape model directly derived from the models used by geologists in their tectonic and paleogeographic reconstructions. The underlying geographic model is a high-resolution pixelation of a spherical Earth. Biogeographic inference is based on diffusion, approximates the effects of the landscape, uses a time-stratified model to take into account the geographic changes, and directly integrates over all probable histories. By using a simplified stochastic mapping algorithm, it is possible to infer the ancestral locations as well as the distance traveled by the ancestral lineages. For illustration, I applied the method to an empirical phylogeny of the Sapindaceae plants. This example shows that methods based on explicit geographic data, coupled with high-resolution paleogeographic models, can provide detailed reconstructions of the ancestral areas but also include inferences about the probable dispersal paths and diffusion speed across the taxon history. The method is implemented in the program PhyGeo.
期刊介绍:
Systematic Biology is the bimonthly journal of the Society of Systematic Biologists. Papers for the journal are original contributions to the theory, principles, and methods of systematics as well as phylogeny, evolution, morphology, biogeography, paleontology, genetics, and the classification of all living things. A Points of View section offers a forum for discussion, while book reviews and announcements of general interest are also featured.