Yi Ding, Qiu-Bing Chen, Hui Xu, Dilare Adi, Yi-Wen Ding, Wen-Jun Luo, Wen-Zhuo Zhu, Jia-Chen Xu, Xiaolu Zhao, Xiong-Jie Shi, Jie Luo, Hao Yin, Xiao-Yi Lu
{"title":"siRNA nanoparticle targeting Usp20 lowers lipid levels and ameliorates metabolic syndrome in mice.","authors":"Yi Ding, Qiu-Bing Chen, Hui Xu, Dilare Adi, Yi-Wen Ding, Wen-Jun Luo, Wen-Zhuo Zhu, Jia-Chen Xu, Xiaolu Zhao, Xiong-Jie Shi, Jie Luo, Hao Yin, Xiao-Yi Lu","doi":"10.1016/j.jlr.2024.100626","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerotic cardiovascular disease is closely correlated with elevated low density lipoprotein-cholesterol. In feeding state, glucose and insulin activate mammalian target of rapamycin 1 that phosphorylates the deubiquitylase ubiquitin-specific peptidase 20 (USP20). USP20 then stabilizes HMG-CoA reductase, thereby increasing lipid biosynthesis. In this study, we applied clinically approved lipid nanoparticles to encapsulate the siRNA targeting Usp20. We demonstrated that silencing of hepatic Usp20 by siRNA decreased body weight, improved insulin sensitivity, and increased energy expenditure through elevating UCP1. In Ldlr<sup>-/-</sup> mice, silencing Usp20 by siRNA decreased lipid levels and prevented atherosclerosis. This study suggests that the RNAi-based therapy targeting hepatic Usp20 has a translational potential to treat metabolic disease.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100626"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418111/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2024.100626","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Atherosclerotic cardiovascular disease is closely correlated with elevated low density lipoprotein-cholesterol. In feeding state, glucose and insulin activate mammalian target of rapamycin 1 that phosphorylates the deubiquitylase ubiquitin-specific peptidase 20 (USP20). USP20 then stabilizes HMG-CoA reductase, thereby increasing lipid biosynthesis. In this study, we applied clinically approved lipid nanoparticles to encapsulate the siRNA targeting Usp20. We demonstrated that silencing of hepatic Usp20 by siRNA decreased body weight, improved insulin sensitivity, and increased energy expenditure through elevating UCP1. In Ldlr-/- mice, silencing Usp20 by siRNA decreased lipid levels and prevented atherosclerosis. This study suggests that the RNAi-based therapy targeting hepatic Usp20 has a translational potential to treat metabolic disease.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.