{"title":"TCP1 expression alters the ferroptosis sensitivity of diffuse large B-cell lymphoma subtypes by stabilising ACSL4 and influences patient prognosis.","authors":"Shuxia Zhang, Jin Wang, Guanxiang Huang, Xueting Xiao, Shujuan Xu, Ping Weng, Yiting Wang, Huiyun Tian, Huifang Huang, Yuanzhong Chen","doi":"10.1038/s41419-024-07001-0","DOIUrl":null,"url":null,"abstract":"<p><p>Diffuse large B-cell lymphoma (DLBCL), an invasive lymphoma with substantial heterogeneity, can be mainly categorised into germinal centre B-cell-like (GCB) and non-GCB subtypes. DLBCL cells are highly susceptible to ferroptosis, which offers an effective avenue for treating recurrent and refractory DLBCL. Moreover, various heat shock proteins are involved in regulating the sensitivity of tumour cells to ferroptosis. Among these proteins, tailless complex polypeptide 1 (TCP1), a subunit of chaperonin-containing T-complex protein-1 (CCT), plays a role in tumour proliferation and survival. Therefore, we explored the role of TCP1 in different DLBCL subtypes, the sensitivity of GCB and non-GCB subtypes to the ferroptosis inducer RAS-selective lethal small molecule 3 (RSL3), and the underlying molecular mechanism. In GCB cells, TCP1 promoted RSL3-induced ferroptosis. Notably, TCP1 could bind with acyl-CoA synthetase long-chain family member 4 (ACSL4), a key enzyme regulating lipid composition and facilitating ferroptosis, to reduce its ubiquitination and degradation. This interaction activated the ACSL4/LPCAT3 signalling pathway and promoted ferroptosis in the GCB subtype. However, in the non-GCB subtype, TCP1 did not act as a positive regulator but served as a predictor of an unfavourable prognosis in patients with non-GCB. In conclusion, our results suggest that in DLBCL, high TCP1 expression enhances the sensitivity of GCB tumour cells to ferroptosis and serves as a marker of poor prognosis in patients with non-GCB DLBCL.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341815/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07001-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diffuse large B-cell lymphoma (DLBCL), an invasive lymphoma with substantial heterogeneity, can be mainly categorised into germinal centre B-cell-like (GCB) and non-GCB subtypes. DLBCL cells are highly susceptible to ferroptosis, which offers an effective avenue for treating recurrent and refractory DLBCL. Moreover, various heat shock proteins are involved in regulating the sensitivity of tumour cells to ferroptosis. Among these proteins, tailless complex polypeptide 1 (TCP1), a subunit of chaperonin-containing T-complex protein-1 (CCT), plays a role in tumour proliferation and survival. Therefore, we explored the role of TCP1 in different DLBCL subtypes, the sensitivity of GCB and non-GCB subtypes to the ferroptosis inducer RAS-selective lethal small molecule 3 (RSL3), and the underlying molecular mechanism. In GCB cells, TCP1 promoted RSL3-induced ferroptosis. Notably, TCP1 could bind with acyl-CoA synthetase long-chain family member 4 (ACSL4), a key enzyme regulating lipid composition and facilitating ferroptosis, to reduce its ubiquitination and degradation. This interaction activated the ACSL4/LPCAT3 signalling pathway and promoted ferroptosis in the GCB subtype. However, in the non-GCB subtype, TCP1 did not act as a positive regulator but served as a predictor of an unfavourable prognosis in patients with non-GCB. In conclusion, our results suggest that in DLBCL, high TCP1 expression enhances the sensitivity of GCB tumour cells to ferroptosis and serves as a marker of poor prognosis in patients with non-GCB DLBCL.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism