Advanced glycation end products mediate biomineralization disorder in diabetic bone disease.

IF 11.7 1区 医学 Q1 CELL BIOLOGY
Cell Reports Medicine Pub Date : 2024-09-17 Epub Date: 2024-08-21 DOI:10.1016/j.xcrm.2024.101694
Qianmin Gao, Yingying Jiang, Dongyang Zhou, Guangfeng Li, Yafei Han, Jingzhi Yang, Ke Xu, Yingying Jing, Long Bai, Zhen Geng, Hao Zhang, Guangyin Zhou, Mengru Zhu, Ning Ji, Ruina Han, Yuanwei Zhang, Zuhao Li, Chuandong Wang, Yan Hu, Hao Shen, Guangchao Wang, Zhongmin Shi, Qinglin Han, Xiao Chen, Jiacan Su
{"title":"Advanced glycation end products mediate biomineralization disorder in diabetic bone disease.","authors":"Qianmin Gao, Yingying Jiang, Dongyang Zhou, Guangfeng Li, Yafei Han, Jingzhi Yang, Ke Xu, Yingying Jing, Long Bai, Zhen Geng, Hao Zhang, Guangyin Zhou, Mengru Zhu, Ning Ji, Ruina Han, Yuanwei Zhang, Zuhao Li, Chuandong Wang, Yan Hu, Hao Shen, Guangchao Wang, Zhongmin Shi, Qinglin Han, Xiao Chen, Jiacan Su","doi":"10.1016/j.xcrm.2024.101694","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with diabetes often experience fragile fractures despite normal or higher bone mineral density (BMD), a phenomenon termed the diabetic bone paradox (DBP). The pathogenesis and therapeutics opinions for diabetic bone disease (DBD) are not fully explored. In this study, we utilize two preclinical diabetic models, the leptin receptor-deficient db/db mice (DB) mouse model and the streptozotocin-induced diabetes (STZ) mouse model. These models demonstrate higher BMD and lower mechanical strength, mirroring clinical observations in diabetic patients. Advanced glycation end products (AGEs) accumulate in diabetic bones, causing higher non-enzymatic crosslinking within collagen fibrils. This inhibits intrafibrillar mineralization and leads to disordered mineral deposition on collagen fibrils, ultimately reducing bone strength. Guanidines, inhibiting AGE formation, significantly improve the microstructure and biomechanical strength of diabetic bone and enhance bone fracture healing. Therefore, targeting AGEs may offer a strategy to regulate bone mineralization and microstructure, potentially preventing the onset of DBD.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524989/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2024.101694","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Patients with diabetes often experience fragile fractures despite normal or higher bone mineral density (BMD), a phenomenon termed the diabetic bone paradox (DBP). The pathogenesis and therapeutics opinions for diabetic bone disease (DBD) are not fully explored. In this study, we utilize two preclinical diabetic models, the leptin receptor-deficient db/db mice (DB) mouse model and the streptozotocin-induced diabetes (STZ) mouse model. These models demonstrate higher BMD and lower mechanical strength, mirroring clinical observations in diabetic patients. Advanced glycation end products (AGEs) accumulate in diabetic bones, causing higher non-enzymatic crosslinking within collagen fibrils. This inhibits intrafibrillar mineralization and leads to disordered mineral deposition on collagen fibrils, ultimately reducing bone strength. Guanidines, inhibiting AGE formation, significantly improve the microstructure and biomechanical strength of diabetic bone and enhance bone fracture healing. Therefore, targeting AGEs may offer a strategy to regulate bone mineralization and microstructure, potentially preventing the onset of DBD.

Abstract Image

高级糖化终产物介导了糖尿病骨病的生物矿化紊乱。
尽管骨矿密度(BMD)正常或较高,但糖尿病患者往往容易发生骨折,这种现象被称为糖尿病骨悖论(DBP)。糖尿病骨病(DBD)的发病机制和治疗意见尚未得到充分探讨。在本研究中,我们利用了两种临床前糖尿病模型,即瘦素受体缺陷的 db/db 小鼠(DB)模型和链脲佐菌素诱导的糖尿病(STZ)小鼠模型。这些模型表现出较高的 BMD 和较低的机械强度,反映了糖尿病患者的临床观察结果。高级糖化终产物(AGEs)在糖尿病患者骨骼中积累,导致胶原纤维内的非酶交联增加。这会抑制纤维内矿化,导致矿物质在胶原纤维上无序沉积,最终降低骨强度。抑制 AGE 形成的鸟嘌呤能显著改善糖尿病患者骨骼的微观结构和生物力学强度,并促进骨折愈合。因此,靶向 AGEs 可能是调节骨矿化和微结构的一种策略,有可能预防 DBD 的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Medicine
Cell Reports Medicine Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍: Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine. Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信