{"title":"Parameters affecting performance of fully instrumented model testing of strip footings on geocell-reinforced soils","authors":"Sarper Demirdogen , Ayhan Gurbuz , Kaan Yunkul","doi":"10.1016/j.geotexmem.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>A thorough study was conducted to assess the performance of the strip footing reinforced with geocells in sand, focusing on understanding the enhancement effects and geocell reinforcement mechanisms. Critical factors such as geocell modulus, height, soil relative density and load eccentricity were examined through fully instrumented model tests. Measurements included surface displacement profiles, strains on the geocell layer, subsurface pressure distribution and other relevant parameters. Results revealed that the strip footing on geocell-reinforced sand beds exhibited better performance compared to those on unreinforced soil, characterized by increased load-carrying capacity and reduced settlements. Notably, stiffer geocells improved performance significantly, with a 40% higher modulus enhancing the bearing pressure by up to 25%, due to better confinement and anchorage effects. Conversely, geocells with a lower modulus demonstrated more effective vertical stress distribution. Furthermore, increased geocell height moderately enhanced footing performance by improving confinement, although wall buckling under eccentric loading limited major gains. Dense soils under centric loading exhibited up to a 20% better improvement in bearing pressure than loose soils due to higher strain mobilization within the geocell layer. These findings highlight the crucial role of geocell and soil properties, as well as loading conditions, in optimizing reinforcement effects for strip footings.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 6","pages":"Pages 1191-1206"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424000906","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A thorough study was conducted to assess the performance of the strip footing reinforced with geocells in sand, focusing on understanding the enhancement effects and geocell reinforcement mechanisms. Critical factors such as geocell modulus, height, soil relative density and load eccentricity were examined through fully instrumented model tests. Measurements included surface displacement profiles, strains on the geocell layer, subsurface pressure distribution and other relevant parameters. Results revealed that the strip footing on geocell-reinforced sand beds exhibited better performance compared to those on unreinforced soil, characterized by increased load-carrying capacity and reduced settlements. Notably, stiffer geocells improved performance significantly, with a 40% higher modulus enhancing the bearing pressure by up to 25%, due to better confinement and anchorage effects. Conversely, geocells with a lower modulus demonstrated more effective vertical stress distribution. Furthermore, increased geocell height moderately enhanced footing performance by improving confinement, although wall buckling under eccentric loading limited major gains. Dense soils under centric loading exhibited up to a 20% better improvement in bearing pressure than loose soils due to higher strain mobilization within the geocell layer. These findings highlight the crucial role of geocell and soil properties, as well as loading conditions, in optimizing reinforcement effects for strip footings.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.