Cross-community affinity: A polarization measure for multi-community networks

Q1 Social Sciences
Sreeja Nair , Adriana Iamnitchi
{"title":"Cross-community affinity: A polarization measure for multi-community networks","authors":"Sreeja Nair ,&nbsp;Adriana Iamnitchi","doi":"10.1016/j.osnem.2024.100280","DOIUrl":null,"url":null,"abstract":"<div><p>This article introduces a heterophily-based metric for assessing polarization in social networks when different opposing ideological communities coexist. The proposed metric measures polarization at the node level and is based on a node’s affinity for other communities. Node-level values can then be aggregated at the community, network, or any intermediate level, resulting in a more comprehensive map of polarization. We looked at our metric on the Polblogs network, the White Helmets Twitter interaction network with two communities, and the VoterFraud2020 domain network with five communities. Additionally, we evaluated our metric on different sets of synthetic graphs to confirm that it yields low polarization scores, as expected. We employed three ways to build synthetic networks: synthetic labeling, dK-series, and network models, in order to assess how the proposed measure behaves to various topologies and network features. Then, we compared our metric to two commonly used polarization metrics, Guerra’s boundary polarization and the random walk controversy score. We also examined how our suggested metric correlates with two network metrics: assortativity and modularity.</p></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696424000053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a heterophily-based metric for assessing polarization in social networks when different opposing ideological communities coexist. The proposed metric measures polarization at the node level and is based on a node’s affinity for other communities. Node-level values can then be aggregated at the community, network, or any intermediate level, resulting in a more comprehensive map of polarization. We looked at our metric on the Polblogs network, the White Helmets Twitter interaction network with two communities, and the VoterFraud2020 domain network with five communities. Additionally, we evaluated our metric on different sets of synthetic graphs to confirm that it yields low polarization scores, as expected. We employed three ways to build synthetic networks: synthetic labeling, dK-series, and network models, in order to assess how the proposed measure behaves to various topologies and network features. Then, we compared our metric to two commonly used polarization metrics, Guerra’s boundary polarization and the random walk controversy score. We also examined how our suggested metric correlates with two network metrics: assortativity and modularity.

跨社区亲和力:多社区网络的极化衡量标准
本文介绍了一种基于异质性的度量方法,用于评估不同对立意识形态社群共存时社交网络中的极化现象。该指标基于节点对其他社群的亲和力,在节点层面衡量极化程度。然后,节点级的值可以在社区、网络或任何中间级进行汇总,从而形成更全面的极化地图。我们在 Polblogs 网络、有两个社区的白头盔推特互动网络和有五个社区的 VoterFraud2020 域网络上研究了我们的指标。此外,我们还在不同的合成图集上评估了我们的度量标准,以确认它能产生较低的极化得分,正如我们所预期的那样。我们采用了三种方法来构建合成网络:合成标签、dK 序列和网络模型,以评估所提出的度量方法在不同拓扑结构和网络特征下的表现。然后,我们将我们的指标与两种常用的极化指标(格拉的边界极化和随机漫步争议得分)进行了比较。我们还研究了我们提出的度量方法与两个网络度量方法的相关性:同类性和模块性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信