Stress-fractional model for clay based on yielding and hardening rules considering thermomechanical restriction

IF 2.8 3区 工程技术 Q2 MECHANICS
{"title":"Stress-fractional model for clay based on yielding and hardening rules considering thermomechanical restriction","authors":"","doi":"10.1016/j.ijnonlinmec.2024.104870","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the development of an isothermal model for characterising the stress-strain behaviour of clay, in the framework of thermomechanical restrictions. Clay is assumed to be a decoupled material, where the accumulation of the Helmholtz free energy can be decoupled into two components, elastic and plastic, that result in the explicit definitions of the shift and dissipative stress tensors, respectively. An anisotropic yielding function fulfilling the first and second laws of thermodynamics is then derived from the rate of plastic dissipation, where the loading tensor and fractional plastic flow tensor are also obtained. A compression-and-shearing hardening mechanism is introduced by further evaluating the thermodynamic restrictions of the rate of Helmholtz free energy at critical state. The developed model contains seven constitutive parameters, where the identification methods are discussed. Finally, an application of the developed model to simulate the drained and undrained stress-strain responses of different clays are provided.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002074622400235X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the development of an isothermal model for characterising the stress-strain behaviour of clay, in the framework of thermomechanical restrictions. Clay is assumed to be a decoupled material, where the accumulation of the Helmholtz free energy can be decoupled into two components, elastic and plastic, that result in the explicit definitions of the shift and dissipative stress tensors, respectively. An anisotropic yielding function fulfilling the first and second laws of thermodynamics is then derived from the rate of plastic dissipation, where the loading tensor and fractional plastic flow tensor are also obtained. A compression-and-shearing hardening mechanism is introduced by further evaluating the thermodynamic restrictions of the rate of Helmholtz free energy at critical state. The developed model contains seven constitutive parameters, where the identification methods are discussed. Finally, an application of the developed model to simulate the drained and undrained stress-strain responses of different clays are provided.

基于屈服和硬化规则的粘土应力-分数模型,考虑热力学限制因素
本研究介绍了在热力学限制框架内,为描述粘土的应力-应变行为而开发的等温模型。粘土被假定为一种解耦材料,其中亥姆霍兹自由能的积累可解耦为弹性和塑性两个部分,从而分别明确定义了位移应力张量和耗散应力张量。然后,根据塑性耗散率推导出符合热力学第一和第二定律的各向异性屈服函数,并得到加载张量和分数塑性流动张量。通过进一步评估临界状态下赫尔姆霍兹自由能速率的热力学限制,引入了压缩剪切硬化机制。所建立的模型包含七个构成参数,并讨论了识别方法。最后,介绍了应用所建立的模型模拟不同粘土的排水和非排水应力-应变响应的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信