{"title":"Feature extractor optimization for discriminative representations in Generalized Category Discovery","authors":"Zhonghao Chang, Xiao Li, Zihao Zhao","doi":"10.1016/j.image.2024.117195","DOIUrl":null,"url":null,"abstract":"<div><p>Generalized Category Discovery (GCD) task involves transferring knowledge from labeled known categories to recognize both known and novel categories within an unlabeled dataset. A significant challenge arises from the lack of prior information for novel categories. To address this, we develop a feature extractor that can learn discriminative features for both known and novel categories. Our approach leverages the observation that similar samples often belong to the same class. We construct a similarity matrix and employ similarity contrastive loss to increase the similarity between similar samples in the feature space. Additionally, we incorporate cluster labels to further refine the feature extractor, utilizing K-means clustering to assign these labels to unlabeled data, providing valuable supervision. Our feature extractor is optimized through the utilization of instance-level contrastive learning and class-level contrastive learning constraints. These constraints promote similarity maximization in both the instance space and the label space for instances sharing the same pseudo-labels. These three components complement each other, facilitating the learning of discriminative representations for both known and novel categories. Through comprehensive evaluations of generic image recognition datasets and challenging fine-grained datasets, we demonstrate that our proposed method achieves state-of-the-art performance.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"129 ","pages":"Article 117195"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000961","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Generalized Category Discovery (GCD) task involves transferring knowledge from labeled known categories to recognize both known and novel categories within an unlabeled dataset. A significant challenge arises from the lack of prior information for novel categories. To address this, we develop a feature extractor that can learn discriminative features for both known and novel categories. Our approach leverages the observation that similar samples often belong to the same class. We construct a similarity matrix and employ similarity contrastive loss to increase the similarity between similar samples in the feature space. Additionally, we incorporate cluster labels to further refine the feature extractor, utilizing K-means clustering to assign these labels to unlabeled data, providing valuable supervision. Our feature extractor is optimized through the utilization of instance-level contrastive learning and class-level contrastive learning constraints. These constraints promote similarity maximization in both the instance space and the label space for instances sharing the same pseudo-labels. These three components complement each other, facilitating the learning of discriminative representations for both known and novel categories. Through comprehensive evaluations of generic image recognition datasets and challenging fine-grained datasets, we demonstrate that our proposed method achieves state-of-the-art performance.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.