U-Match: Exploring Hierarchy-Aware Local Context for Two-View Correspondence Learning

Zizhuo Li;Shihua Zhang;Jiayi Ma
{"title":"U-Match: Exploring Hierarchy-Aware Local Context for Two-View Correspondence Learning","authors":"Zizhuo Li;Shihua Zhang;Jiayi Ma","doi":"10.1109/TPAMI.2024.3447048","DOIUrl":null,"url":null,"abstract":"Rejecting outlier correspondences is one of the critical steps for successful feature-based two-view geometry estimation, and contingent heavily upon local context exploration. Recent advances focus on devising elaborate local context extractors whereas typically adopting \n<italic>explicit</i>\n neighborhood relationship modeling at a specific scale, which is intrinsically flawed and inflexible, because 1) severe outliers often populated in putative correspondences and 2) the uncertainty in the distribution of inliers and outliers make the network incapable of capturing adequate and reliable local context from such neighborhoods, therefore resulting in the failure of pose estimation. This prospective study proposes a novel network called U-Match that has the flexibility to enable \n<italic>implicit</i>\n local context awareness at multiple levels, naturally circumventing the aforementioned issues that plague most existing studies. Specifically, to aggregate multi-level local context implicitly, a hierarchy-aware graph representation module is designed to flexibly encode and decode hierarchical features. Moreover, considering that global context always works collaboratively with local context, an orthogonal local-and-global information fusion module is presented to integrate complementary local and global context in a redundancy-free manner, thus yielding compact feature representations to facilitate correspondence learning. Thorough experimentation across relative pose estimation, homography estimation, visual localization, and point cloud registration affirms U-Match's remarkable capabilities.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"46 12","pages":"10960-10977"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10643351/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rejecting outlier correspondences is one of the critical steps for successful feature-based two-view geometry estimation, and contingent heavily upon local context exploration. Recent advances focus on devising elaborate local context extractors whereas typically adopting explicit neighborhood relationship modeling at a specific scale, which is intrinsically flawed and inflexible, because 1) severe outliers often populated in putative correspondences and 2) the uncertainty in the distribution of inliers and outliers make the network incapable of capturing adequate and reliable local context from such neighborhoods, therefore resulting in the failure of pose estimation. This prospective study proposes a novel network called U-Match that has the flexibility to enable implicit local context awareness at multiple levels, naturally circumventing the aforementioned issues that plague most existing studies. Specifically, to aggregate multi-level local context implicitly, a hierarchy-aware graph representation module is designed to flexibly encode and decode hierarchical features. Moreover, considering that global context always works collaboratively with local context, an orthogonal local-and-global information fusion module is presented to integrate complementary local and global context in a redundancy-free manner, thus yielding compact feature representations to facilitate correspondence learning. Thorough experimentation across relative pose estimation, homography estimation, visual localization, and point cloud registration affirms U-Match's remarkable capabilities.
U-Match:探索双视角对应学习的层次感知本地语境
拒绝异常值对应是成功进行基于特征的双视角几何估算的关键步骤之一,这在很大程度上取决于局部上下文探索。最近的进展主要集中在设计精细的局部背景提取器上,而通常采用的是特定尺度的显式邻域关系建模,这种建模方式本身存在缺陷且缺乏灵活性,因为:1)在推定的对应关系中经常出现严重的异常值;2)异常值和异常值分布的不确定性使得网络无法从这些邻域中捕捉到充分可靠的局部背景,从而导致姿态估计失败。本前瞻性研究提出了一种名为 U-Match 的新型网络,该网络具有灵活性,可实现多层次的隐式本地上下文感知,自然而然地规避了困扰大多数现有研究的上述问题。具体来说,为了隐式聚合多层次的本地上下文,设计了一个分层感知图表示模块,以灵活地编码和解码分层特征。此外,考虑到全局上下文总是与局部上下文协同工作,提出了一个正交的局部和全局信息融合模块,以无冗余的方式整合互补的局部和全局上下文,从而产生紧凑的特征表示,促进对应学习。在相对姿态估计、同构估计、视觉定位和点云注册等方面进行的深入实验证实了 U-Match 的卓越能力。我们的代码可通过 https://github.com/ZizhuoLi/U-Match 公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信