CO-Net++: A Cohesive Network for Multiple Point Cloud Tasks at Once With Two-Stage Feature Rectification

Tao Xie;Kun Dai;Qihao Sun;Zhiqiang Jiang;Chuqing Cao;Lijun Zhao;Ke Wang;Ruifeng Li
{"title":"CO-Net++: A Cohesive Network for Multiple Point Cloud Tasks at Once With Two-Stage Feature Rectification","authors":"Tao Xie;Kun Dai;Qihao Sun;Zhiqiang Jiang;Chuqing Cao;Lijun Zhao;Ke Wang;Ruifeng Li","doi":"10.1109/TPAMI.2024.3447008","DOIUrl":null,"url":null,"abstract":"We present CO-Net++, a cohesive framework that optimizes multiple point cloud tasks collectively across heterogeneous dataset domains with a two-stage feature rectification strategy. The core of CO-Net++ lies in optimizing task-shared parameters to capture universal features across various tasks while discerning task-specific parameters tailored to encapsulate the unique characteristics of each task. Specifically, CO-Net++ develops a two-stage feature rectification strategy (TFRS) that distinctly separates the optimization processes for task-shared and task-specific parameters. At the first stage, TFRS configures all parameters in backbone as task-shared, which encourages CO-Net++ to thoroughly assimilate universal attributes pertinent to all tasks. In addition, TFRS introduces a sign-based gradient surgery to facilitate the optimization of task-shared parameters, thus alleviating conflicting gradients induced by various dataset domains. In the second stage, TFRS freezes task-shared parameters and flexibly integrates task-specific parameters into the network for encoding specific characteristics of each dataset domain. CO-Net++ prominently mitigates conflicting optimization caused by parameter entanglement, ensuring the sufficient identification of universal and specific features. Extensive experiments reveal that CO-Net++ realizes exceptional performances on both 3D object detection and 3D semantic segmentation tasks. Moreover, CO-Net++ delivers an impressive incremental learning capability and prevents catastrophic amnesia when generalizing to new point cloud tasks.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"46 12","pages":"10911-10928"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10643346/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present CO-Net++, a cohesive framework that optimizes multiple point cloud tasks collectively across heterogeneous dataset domains with a two-stage feature rectification strategy. The core of CO-Net++ lies in optimizing task-shared parameters to capture universal features across various tasks while discerning task-specific parameters tailored to encapsulate the unique characteristics of each task. Specifically, CO-Net++ develops a two-stage feature rectification strategy (TFRS) that distinctly separates the optimization processes for task-shared and task-specific parameters. At the first stage, TFRS configures all parameters in backbone as task-shared, which encourages CO-Net++ to thoroughly assimilate universal attributes pertinent to all tasks. In addition, TFRS introduces a sign-based gradient surgery to facilitate the optimization of task-shared parameters, thus alleviating conflicting gradients induced by various dataset domains. In the second stage, TFRS freezes task-shared parameters and flexibly integrates task-specific parameters into the network for encoding specific characteristics of each dataset domain. CO-Net++ prominently mitigates conflicting optimization caused by parameter entanglement, ensuring the sufficient identification of universal and specific features. Extensive experiments reveal that CO-Net++ realizes exceptional performances on both 3D object detection and 3D semantic segmentation tasks. Moreover, CO-Net++ delivers an impressive incremental learning capability and prevents catastrophic amnesia when generalizing to new point cloud tasks.
CO-Net++:一次完成多个点云任务的内聚网络,带两阶段特征校正。
我们提出了 CO-Net++,这是一个内聚性框架,采用两阶段特征校正策略,在异构数据集领域对多个点云任务进行集体优化。CO-Net++ 的核心在于优化任务共享参数,以捕捉不同任务的通用特征,同时辨别特定任务参数,以概括每个任务的独特特征。具体来说,CO-Net++ 开发了一种两阶段特征修正策略(TFRS),将任务共享参数和任务特定参数的优化过程截然分开。在第一阶段,TFRS 将骨干网中的所有参数配置为任务共享参数,从而鼓励 CO-Net++ 彻底吸收与所有任务相关的通用属性。此外,TFRS 还引入了基于符号的梯度手术,以促进任务共享参数的优化,从而缓解不同数据集域引起的梯度冲突。在第二阶段,TFRS 会冻结任务共享参数,并灵活地将特定任务参数整合到网络中,以编码每个数据集域的具体特征。CO-Net++ 显著缓解了因参数纠缠而产生的优化冲突,确保了通用特征和特定特征的充分识别。广泛的实验表明,CO-Net++ 在三维物体检测和三维语义分割任务中均表现出色。此外,CO-Net++ 还具有令人印象深刻的增量学习能力,在推广到新的点云任务时可防止灾难性失忆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信