Christina L Brunnquell, Trevor J Andrews, Samuel W Fielden, Kathryn Huff, David W Jordan, Michael T O'Shea, Dustin K Ragan, Michael A Tressler, Travis C Salzillo, Joseph Och
{"title":"AAPM Task Group Report 325: MRI static magnetic field homogeneity measurement and evaluation procedures – Guidance and resources","authors":"Christina L Brunnquell, Trevor J Andrews, Samuel W Fielden, Kathryn Huff, David W Jordan, Michael T O'Shea, Dustin K Ragan, Michael A Tressler, Travis C Salzillo, Joseph Och","doi":"10.1002/mp.17351","DOIUrl":null,"url":null,"abstract":"<p>Measurement of static magnetic field (B<sub>0</sub>) homogeneity is an essential component of routine MRI system evaluation. This report summarizes the work of AAPM Task Group (TG) 325 on vendor-specific methods of B<sub>0</sub> homogeneity measurement and evaluation. TG 325 was charged with producing a set of detailed, step-by-step instructions to implement B<sub>0</sub> homogeneity measurement methods discussed in the American College of Radiology (ACR) MRI Quality Control Manual using specific makes and models of MRI scanners. The TG produced such instructions for as many approaches as was relevant and practical on six currently available vendor platforms including details of software/tools, settings, phantoms, and other experimental details needed for a reproducible protocol. Because edits to these instructions may need to be made as vendors enter and exit the market and change available tools, interfaces, and access levels over time, the step-by-step instructions are published as a living document on the AAPM website. This summary document provides an introduction to B<sub>0</sub> homogeneity testing in MRI and several of the common methods for its measurement and evaluation. A living document on the AAPM website provides vendor-specific step-by-step instructions for performing these tests to facilitate accurate and reproducible B<sub>0</sub> homogeneity evaluation on a routine basis.</p>","PeriodicalId":18384,"journal":{"name":"Medical physics","volume":"51 10","pages":"7038-7046"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mp.17351","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Measurement of static magnetic field (B0) homogeneity is an essential component of routine MRI system evaluation. This report summarizes the work of AAPM Task Group (TG) 325 on vendor-specific methods of B0 homogeneity measurement and evaluation. TG 325 was charged with producing a set of detailed, step-by-step instructions to implement B0 homogeneity measurement methods discussed in the American College of Radiology (ACR) MRI Quality Control Manual using specific makes and models of MRI scanners. The TG produced such instructions for as many approaches as was relevant and practical on six currently available vendor platforms including details of software/tools, settings, phantoms, and other experimental details needed for a reproducible protocol. Because edits to these instructions may need to be made as vendors enter and exit the market and change available tools, interfaces, and access levels over time, the step-by-step instructions are published as a living document on the AAPM website. This summary document provides an introduction to B0 homogeneity testing in MRI and several of the common methods for its measurement and evaluation. A living document on the AAPM website provides vendor-specific step-by-step instructions for performing these tests to facilitate accurate and reproducible B0 homogeneity evaluation on a routine basis.
期刊介绍:
Medical Physics publishes original, high impact physics, imaging science, and engineering research that advances patient diagnosis and therapy through contributions in 1) Basic science developments with high potential for clinical translation 2) Clinical applications of cutting edge engineering and physics innovations 3) Broadly applicable and innovative clinical physics developments
Medical Physics is a journal of global scope and reach. By publishing in Medical Physics your research will reach an international, multidisciplinary audience including practicing medical physicists as well as physics- and engineering based translational scientists. We work closely with authors of promising articles to improve their quality.