{"title":"Factors influencing the use of big data within healthcare services: a systematic review.","authors":"Mohsen Khosravi, Seyyed Morteza Mojtabaeian, Zahra Zare","doi":"10.1177/18333583241270484","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> The emergence of big data holds the promise of aiding healthcare providers by identifying patterns and converting vast quantities of data into actionable insights facilitating the provision of precision medicine and decision-making. <b>Objective:</b> This study aimed to investigate the factors influencing use of big data within healthcare services to facilitate their use. <b>Method:</b> A systematic review was conducted in February 2024, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Database searches for articles published between 01 January 2020 and 18 February 2024 and included PubMed, Scopus, ProQuest and Cochrane Library. The Authority, Accuracy, Coverage, Objectivity, Date, Significance ( AACODS) checklist was used to evaluate the quality of the included articles. Subsequently, a thematic analysis was conducted on the findings of the review, using the Boyatzis approach. <b>Results:</b> A final selection of 46 studies were included in this systematic review. A significant proportion of these studies demonstrated acceptable quality, and the level of bias was deemed satisfactory. Thematic analysis identified seven major themes that influenced the use of big data in healthcare services. These themes were grouped into four primary categories: performance expectancy, effort expectancy, social influence, and facilitating conditions. Factors associated with \"effort expectancy\" were the most highly cited in the included studies (67%), while those related to \"social influence\" received the fewest citations (15%). <b>Conclusion:</b> This study underscored the critical role of \"effort expectancy\" factors, particularly those under the theme of \"data complexity and management,\" in the process of using big data in healthcare services. <b>Implications:</b> Results of this study provide groundwork for future research to explore facilitators and barriers to using big data in health care, particularly in relation to data complexity and the efficient and effective management of big data, with significant implications for healthcare administrators and policymakers.</p>","PeriodicalId":73210,"journal":{"name":"Health information management : journal of the Health Information Management Association of Australia","volume":" ","pages":"18333583241270484"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health information management : journal of the Health Information Management Association of Australia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/18333583241270484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The emergence of big data holds the promise of aiding healthcare providers by identifying patterns and converting vast quantities of data into actionable insights facilitating the provision of precision medicine and decision-making. Objective: This study aimed to investigate the factors influencing use of big data within healthcare services to facilitate their use. Method: A systematic review was conducted in February 2024, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Database searches for articles published between 01 January 2020 and 18 February 2024 and included PubMed, Scopus, ProQuest and Cochrane Library. The Authority, Accuracy, Coverage, Objectivity, Date, Significance ( AACODS) checklist was used to evaluate the quality of the included articles. Subsequently, a thematic analysis was conducted on the findings of the review, using the Boyatzis approach. Results: A final selection of 46 studies were included in this systematic review. A significant proportion of these studies demonstrated acceptable quality, and the level of bias was deemed satisfactory. Thematic analysis identified seven major themes that influenced the use of big data in healthcare services. These themes were grouped into four primary categories: performance expectancy, effort expectancy, social influence, and facilitating conditions. Factors associated with "effort expectancy" were the most highly cited in the included studies (67%), while those related to "social influence" received the fewest citations (15%). Conclusion: This study underscored the critical role of "effort expectancy" factors, particularly those under the theme of "data complexity and management," in the process of using big data in healthcare services. Implications: Results of this study provide groundwork for future research to explore facilitators and barriers to using big data in health care, particularly in relation to data complexity and the efficient and effective management of big data, with significant implications for healthcare administrators and policymakers.