Mechanistic Insight Into the Conformational Changes of Cas8 Upon Binding to Different PAM Sequences in the Transposon-Encoded Type I-F CRISPR-Cas System.
{"title":"Mechanistic Insight Into the Conformational Changes of Cas8 Upon Binding to Different PAM Sequences in the Transposon-Encoded Type I-F CRISPR-Cas System.","authors":"Amnah Alalmaie, Raed Khashan","doi":"10.1002/prot.26730","DOIUrl":null,"url":null,"abstract":"<p><p>The INTEGRATE system is a gene-editing approach that offers advantages over the widely used CRISPR-Cas9 system. It does not introduce double strand breaks in the target DNA but rather integrates the desired DNA sequence directly into it. The first step in the integration process is PAM recognition, which is critical to understanding and optimizing the system. Experimental testing revealed varying integration efficiencies of different PAM mutants, and computational simulations were carried out to gain mechanistic insight into the conformational changes of Cas8 during PAM recognition. Our results showed that the interaction between Arg246 and guanine at position (-1) of the target strand is critical for PAM recognition. We found that unfavorable interactions in the 5'-AC-3' PAM mutant disrupted this interaction and may be responsible for its 0% integration efficiency. Additionally, we discovered that PAM sequences not only initiate the integration process but also regulate it through an allosteric mechanism that connects the N-terminal domain and the helical bundle of Cas8. This allosteric regulation was present in all PAMs tested, even those with lower integration efficiencies, such as 5'-TC-3' and 5'-AC-3'. We identified the Cas8 residues that are involved in this regulation. Our findings provide valuable insights into PAM recognition mechanisms in the INTEGRATE system and can help improve the gene-editing technology.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":"1428-1448"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26730","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The INTEGRATE system is a gene-editing approach that offers advantages over the widely used CRISPR-Cas9 system. It does not introduce double strand breaks in the target DNA but rather integrates the desired DNA sequence directly into it. The first step in the integration process is PAM recognition, which is critical to understanding and optimizing the system. Experimental testing revealed varying integration efficiencies of different PAM mutants, and computational simulations were carried out to gain mechanistic insight into the conformational changes of Cas8 during PAM recognition. Our results showed that the interaction between Arg246 and guanine at position (-1) of the target strand is critical for PAM recognition. We found that unfavorable interactions in the 5'-AC-3' PAM mutant disrupted this interaction and may be responsible for its 0% integration efficiency. Additionally, we discovered that PAM sequences not only initiate the integration process but also regulate it through an allosteric mechanism that connects the N-terminal domain and the helical bundle of Cas8. This allosteric regulation was present in all PAMs tested, even those with lower integration efficiencies, such as 5'-TC-3' and 5'-AC-3'. We identified the Cas8 residues that are involved in this regulation. Our findings provide valuable insights into PAM recognition mechanisms in the INTEGRATE system and can help improve the gene-editing technology.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.