Mengting Hu, Jingyi Zhang, Qiye Cheng, Wei Wei, Yijun Liu, Jianying Li, Lei Liu
{"title":"Multi-DECT Image-based Intratumoral and Peritumoral Radiomics for Preoperative Prediction of Muscle Invasion in Bladder Cancer.","authors":"Mengting Hu, Jingyi Zhang, Qiye Cheng, Wei Wei, Yijun Liu, Jianying Li, Lei Liu","doi":"10.1016/j.acra.2024.08.010","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To assess the predictive value of intratumoral and peritumoral radiomics based on Dual-energy CT urography (DECTU) multi-images for preoperatively predicting the muscle invasion status of bladder cancer (BCa).</p><p><strong>Material and methods: </strong>This retrospective analysis involved 202 BCa patients who underwent DECTU. DECTU-derived quantitative parameters were identified as risk factors through stepwise regression analysis to construct a DECT model. The radiomic features from the intratumoral and 3 mm outward peritumoral regions were extracted from the 120 kVp-like, 40 keV, 100 keV, and iodine-based material-decomposition (IMD) images in the venous-phase and were screened using Mann-Whitney U test, Spearman correlation analysis, and LASSO. Radiomics models were developed using the Multilayer Perceptron for the intratumoral, peritumoral and intra- and peritumoral (IntraPeri) regions. Subsequently, a nomogram was created by integrating the multi-image IntraPeri radiomics and DECT model. Model performance was evaluated using area-under-the-curve (AUC), accuracy, sensitivity, and specificity.</p><p><strong>Results: </strong>Normalized iodine concentration (NIC) was identified as an independent predictor for the DECT model. The IntraPeri model demonstrated superior performance compared to the intratumoral and peritumoral models both in 40 keV (0.830 vs. 0.766 vs. 0.763) and IMD images (0.881 vs. 0.840 vs. 0.821) in the test cohort. In the test cohort, the nomogram exhibited the best predictability (AUC=0.886, accuracy=0.836, sensitivity=0.737, and specificity=0.881), outperformed the DECT model (AUC=0.763, accuracy=0.754, sensitivity=0.632, and specificity=0.810) in predicting muscle invasion status of BCa with a statistically significant difference (p < 0.05).</p><p><strong>Conclusion: </strong>The nomogram, incorporating IntraPeri radiomics and NIC, serves as a valuable and non-invasive tool for preoperatively assessing the muscle invasion status of BCa.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":"287-297"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2024.08.010","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To assess the predictive value of intratumoral and peritumoral radiomics based on Dual-energy CT urography (DECTU) multi-images for preoperatively predicting the muscle invasion status of bladder cancer (BCa).
Material and methods: This retrospective analysis involved 202 BCa patients who underwent DECTU. DECTU-derived quantitative parameters were identified as risk factors through stepwise regression analysis to construct a DECT model. The radiomic features from the intratumoral and 3 mm outward peritumoral regions were extracted from the 120 kVp-like, 40 keV, 100 keV, and iodine-based material-decomposition (IMD) images in the venous-phase and were screened using Mann-Whitney U test, Spearman correlation analysis, and LASSO. Radiomics models were developed using the Multilayer Perceptron for the intratumoral, peritumoral and intra- and peritumoral (IntraPeri) regions. Subsequently, a nomogram was created by integrating the multi-image IntraPeri radiomics and DECT model. Model performance was evaluated using area-under-the-curve (AUC), accuracy, sensitivity, and specificity.
Results: Normalized iodine concentration (NIC) was identified as an independent predictor for the DECT model. The IntraPeri model demonstrated superior performance compared to the intratumoral and peritumoral models both in 40 keV (0.830 vs. 0.766 vs. 0.763) and IMD images (0.881 vs. 0.840 vs. 0.821) in the test cohort. In the test cohort, the nomogram exhibited the best predictability (AUC=0.886, accuracy=0.836, sensitivity=0.737, and specificity=0.881), outperformed the DECT model (AUC=0.763, accuracy=0.754, sensitivity=0.632, and specificity=0.810) in predicting muscle invasion status of BCa with a statistically significant difference (p < 0.05).
Conclusion: The nomogram, incorporating IntraPeri radiomics and NIC, serves as a valuable and non-invasive tool for preoperatively assessing the muscle invasion status of BCa.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.