The genetic architecture of polygenic local adaptation and its role in shaping barriers to gene flow.

IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY
Genetics Pub Date : 2024-11-06 DOI:10.1093/genetics/iyae140
Arthur Zwaenepoel, Himani Sachdeva, Christelle Fraïsse
{"title":"The genetic architecture of polygenic local adaptation and its role in shaping barriers to gene flow.","authors":"Arthur Zwaenepoel, Himani Sachdeva, Christelle Fraïsse","doi":"10.1093/genetics/iyae140","DOIUrl":null,"url":null,"abstract":"<p><p>We consider how the genetic architecture underlying locally adaptive traits determines the strength of a barrier to gene flow in a mainland-island model. Assuming a general life cycle, we derive an expression for the effective migration rate when local adaptation is due to genetic variation at many loci under directional selection on the island, allowing for arbitrary fitness and dominance effects across loci. We show how the effective migration rate can be combined with classical single-locus diffusion theory to accurately predict multilocus differentiation between the mainland and island at migration-selection-drift equilibrium and determine the migration rate beyond which local adaptation collapses, while accounting for genetic drift and weak linkage. Using our efficient numerical tools, we then present a detailed study of the effects of dominance on barriers to gene flow, showing that when total selection is sufficiently strong, more recessive local adaptation generates stronger barriers to gene flow. We then study how heterogeneous genetic architectures of local adaptation affect barriers to gene flow, characterizing adaptive differentiation at migration-selection balance for different distributions of fitness effects. We find that a more heterogeneous genetic architecture generally yields a stronger genome-wide barrier to gene flow and that the detailed genetic architecture underlying locally adaptive traits can have an important effect on observable differentiation when divergence is not too large. Lastly, we study the limits of our approach as loci become more tightly linked, showing that our predictions remain accurate over a large biologically relevant domain.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538419/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae140","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider how the genetic architecture underlying locally adaptive traits determines the strength of a barrier to gene flow in a mainland-island model. Assuming a general life cycle, we derive an expression for the effective migration rate when local adaptation is due to genetic variation at many loci under directional selection on the island, allowing for arbitrary fitness and dominance effects across loci. We show how the effective migration rate can be combined with classical single-locus diffusion theory to accurately predict multilocus differentiation between the mainland and island at migration-selection-drift equilibrium and determine the migration rate beyond which local adaptation collapses, while accounting for genetic drift and weak linkage. Using our efficient numerical tools, we then present a detailed study of the effects of dominance on barriers to gene flow, showing that when total selection is sufficiently strong, more recessive local adaptation generates stronger barriers to gene flow. We then study how heterogeneous genetic architectures of local adaptation affect barriers to gene flow, characterizing adaptive differentiation at migration-selection balance for different distributions of fitness effects. We find that a more heterogeneous genetic architecture generally yields a stronger genome-wide barrier to gene flow and that the detailed genetic architecture underlying locally adaptive traits can have an important effect on observable differentiation when divergence is not too large. Lastly, we study the limits of our approach as loci become more tightly linked, showing that our predictions remain accurate over a large biologically relevant domain.

多基因局部适应的遗传结构及其在形成基因流动障碍中的作用。
我们考虑了在大陆-岛屿模型中,局部适应性特征的遗传结构如何决定基因流动障碍的强度。假定有一个一般的生命周期,当局部适应是由于岛屿上定向选择下许多位点上的遗传变异时,我们推导出了一个有效迁移率的表达式,并允许在不同位点上存在任意的适合度和优势效应。我们展示了如何将有效迁移率与经典的单基因位点扩散理论相结合,以准确预测在迁移-选择-漂移平衡时大陆和岛屿之间的多基因位点分化,并确定迁移率,超过迁移率,局部适应就会崩溃,同时考虑遗传漂移和弱联系。利用高效的数值工具,我们详细研究了显性对基因流动障碍的影响,结果表明,当总选择足够强时,更多的隐性本地适应会产生更强的基因流动障碍。然后,我们研究了局部适应的异质性遗传结构如何影响基因流动的障碍,描述了不同适存效应分布下迁移-选择平衡时的适应性分化。我们发现,异质性更强的遗传结构通常会产生更强的全基因组基因流动障碍,而且当分化不太大时,局部适应性性状的详细遗传结构会对可观察到的分化产生重要影响。最后,我们研究了我们的方法在基因位点联系越来越紧密时的局限性,结果表明我们的预测在很大的生物相关领域内仍然是准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信