The emerging H3K9me3 chromatin landscape during zebrafish embryogenesis.

IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY
Genetics Pub Date : 2024-10-07 DOI:10.1093/genetics/iyae138
Katherine L Duval, Ashley R Artis, Mary G Goll
{"title":"The emerging H3K9me3 chromatin landscape during zebrafish embryogenesis.","authors":"Katherine L Duval, Ashley R Artis, Mary G Goll","doi":"10.1093/genetics/iyae138","DOIUrl":null,"url":null,"abstract":"<p><p>The structural organization of eukaryotic genomes is contingent upon the fractionation of DNA into transcriptionally permissive euchromatin and repressive heterochromatin. However, we have a limited understanding of how these distinct states are first established during animal embryogenesis. Histone 3 lysine 9 trimethylation (H3K9me3) is critical to heterochromatin formation, and bulk establishment of this mark is thought to help drive large-scale remodeling of an initially naive chromatin state during animal embryogenesis. However, a detailed understanding of this process is lacking. Here, we leverage CUT&RUN to define the emerging H3K9me3 landscape of the zebrafish embryo with high sensitivity and temporal resolution. Despite the prevalence of DNA transposons in the zebrafish genome, we found that LTR transposons are preferentially targeted for embryonic H3K9me3 deposition, with different families exhibiting distinct establishment timelines. High signal-to-noise ratios afforded by CUT&RUN revealed new, emerging sites of low-amplitude H3K9me3 that initiated before the major wave of zygotic genome activation (ZGA). Early sites of establishment predominated at specific subsets of transposons and were particularly enriched for transposon sequences with maternal piRNAs and pericentromeric localization. Notably, the number of H3K9me3 enriched sites increased linearly across blastula development, while quantitative comparison revealed a >10-fold genome-wide increase in H3K9me3 signal at established sites over just 30 min at the onset of major ZGA. Continued maturation of the H3K9me3 landscape was observed beyond the initial wave of bulk establishment.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457944/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae138","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The structural organization of eukaryotic genomes is contingent upon the fractionation of DNA into transcriptionally permissive euchromatin and repressive heterochromatin. However, we have a limited understanding of how these distinct states are first established during animal embryogenesis. Histone 3 lysine 9 trimethylation (H3K9me3) is critical to heterochromatin formation, and bulk establishment of this mark is thought to help drive large-scale remodeling of an initially naive chromatin state during animal embryogenesis. However, a detailed understanding of this process is lacking. Here, we leverage CUT&RUN to define the emerging H3K9me3 landscape of the zebrafish embryo with high sensitivity and temporal resolution. Despite the prevalence of DNA transposons in the zebrafish genome, we found that LTR transposons are preferentially targeted for embryonic H3K9me3 deposition, with different families exhibiting distinct establishment timelines. High signal-to-noise ratios afforded by CUT&RUN revealed new, emerging sites of low-amplitude H3K9me3 that initiated before the major wave of zygotic genome activation (ZGA). Early sites of establishment predominated at specific subsets of transposons and were particularly enriched for transposon sequences with maternal piRNAs and pericentromeric localization. Notably, the number of H3K9me3 enriched sites increased linearly across blastula development, while quantitative comparison revealed a >10-fold genome-wide increase in H3K9me3 signal at established sites over just 30 min at the onset of major ZGA. Continued maturation of the H3K9me3 landscape was observed beyond the initial wave of bulk establishment.

斑马鱼胚胎发育过程中新出现的 H3K9me3 染色质景观
真核生物基因组的结构组织取决于将 DNA 分成转录允许性的外染色质和抑制性的异染色质。然而,我们对动物胚胎发生过程中如何首次建立这些不同的状态了解有限。组蛋白 3 赖氨酸 9 三甲基化(H3K9me3)对异染色质的形成至关重要,这种标记的大量建立被认为有助于推动动物胚胎发生过程中最初的幼稚染色质状态的大规模重塑。然而,对这一过程还缺乏详细的了解。在这里,我们利用 CUT&RUN 以高灵敏度和时间分辨率定义了斑马鱼胚胎中新出现的 H3K9me3 图谱。尽管斑马鱼基因组中普遍存在 DNA 转座子,但我们发现 LTR 转座子是胚胎 H3K9me3 沉积的优先靶标,不同的家族表现出不同的建立时间表。CUT&RUN提供的高信噪比揭示了新出现的低振幅H3K9me3位点,这些位点在子代基因组激活(ZGA)大潮之前就已开始。早期建立的位点主要位于转座子的特定子集,尤其富集于具有母体 piRNA 和近中心粒定位的转座子序列。值得注意的是,H3K9me3富集位点的数量在整个胚泡发育过程中呈线性增长,而定量比较显示,在主要ZGA开始时的短短30分钟内,建立位点的H3K9me3信号在全基因组范围内增加了10倍以上。观察到 H3K9me3 的持续成熟超过了最初的大量建立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信